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1 Introduction

A sizable body of economic research examines peer effects, network effects and more
generally “social effects:” mutual externalities induced by socio-economic interaction.
Within this literature, peer effects in education occupy a prominent position (Sacer-
dote, 2001; Calvó-Armengol et al., 2009; De Giorgi et al., 2010; Carrell et al., 2013),
but applications in more diverse fields are also numerous (Glaeser et al., 1996; Duflo
and Saez, 2003; Mas and Moretti, 2009).1 Originally, our understanding of of social
effects was hindered by the so-called “reflection problem” (Manski, 1993).2 However,
over time advances have been made. To identify the effect of social interactions, the
current econometric theory and practice emphasize the use of instrumental variables
based upon the observable characteristics of indirectly connected agents in structures
of social interactions with a non-trivial topology, such as networks (Bramoullé et al.,
2009; Blume et al., 2015).3 Yet, this approach is largely confined to settings where the
observable characteristics in question, in addition to the structure of socio-economic
interactions, are both as good as exogenous. This makes studies based on such settings
liable to a critique that was put forward most notably by Angrist (2014). According
to it, the current results in the literature are likely to reflect spurious correlations due
to unobserved “correlated effects” that are shared between peers.

By contrast, in this paper we examine a cross-sectional model of social interactions
where the observed and unobserved individual characteristics are: (i) cross-correlated
across individuals in some metric space, and (ii) mutually dependent on one another.
Our point of departure is a “Spatially Autoregressive” model (Cliff and Ord, 1981),
hereinafter SAR, whose econometrics has been analyzed extensively (Lee, 2007a,b; Lee
et al., 2010; Lin and Lee, 2010; Liu and Lee, 2010; Lee and Liu, 2010).4 Similarly to
related empirical models, ours can be derived from an explicit theoretical framework

1Other examples include studies about knowledge spillovers across firms (Jaffe, 1986; Bloom et al.,
2013; Zacchia, 2020), peer effects in scientific production (e.g. Azoulay et al., 2010; Waldinger, 2012)
and learning externalities (Conley and Udry, 2010).

2Social effects occurring within segregated groups with homogeneous relationships between their
members are hard to identify, as group characteristics are simultaneous with group outcomes.

3Bramoullé et al. (2009) highlighted in particular the identification power of networked structures
of interaction in actual empirical settings. The estimation framework that they adopt dates back in
spatial econometrics to at least Kelejian and Prucha (1998).

4A relevant strand of this literature (Kelejian and Prucha, 2004; Liu, 2014, 2020; Liu and Saraiva,
2015, 2019; Yang and Lee, 2017; Cohen-Cole et al., 2018) examines simultaneous equations models
(SEMs) with spatially autoregressive terms for one or more of its endogenous variables. As discussed
more elaborately in section 2.2, our model can be seen as a particular kind of SEM.
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featuring strategic interaction, which can accommodate contexts ranging from peer
effects in the classroom to Research and Development (R&D) spillovers. In our model,
the combinations of features (i) and (ii) above not only makes standard estimates of
social effects inconsistent, but can also be observationally equivalent to the so-called
“exogenous” or “contextual” effects of peers’ characteristics that are often featured in
studies about social interactions. Both observations resonate with the aforementioned
critique of the empirical literature about peer or social effects. This raises the question
of whether the latter are testable in such a framework.

The main contribution of our paper is to show that within this framework, social
effects are identified without resorting to external instruments. We analyze a scenario
where the observable characteristics of socio-economic agents depend in a linear fash-
ion on both their own unobservables and on those of other agents, which makes such
characteristics both endogenous and cross-correlated. We impose no restriction upon
the spatial matrices that characterize this type of endogeneity, except that they are
known to the econometrician up to a multiplicative parameter that quantifies the ex-
tent of endogeneity. As we elaborate later, knowing the structure but not the intensity
of this type of spatial correlation is arguably realistic in those empirical settings that
motivate our work. In peer networks for example, observable characteristics, possibly
all of them, are likely correlated on the basis of individual previous backgrounds, be
they professional, cultural or geographical; in firm-level networks instead, the spatial
correlation of key firm-level variables is likely shaped by similarities in technological
and product market characteristics. Still, in our analysis we also explore the practical
implications of knowing the structure in question imperfectly (misspecification).

The main identifying assumption extends those by Bramoullé et al. (2009), as it
requires that the structure of social interactions is non-overlapping up to an additional
degree of separation in network space relative to their original results. The intuition
is that the type of endogeneity featured in our framework introduces a bias which is
observationally equivalent to higher-order network effects; the bias can be explicitly
controlled for by accounting for the correlation between an individual’s outcome and
the characteristics of higher-order indirect connections in the network. In order to do
that, such correlations must be separately identified at different degrees of separation.
While the moment conditions that motivate our identification results are non-linear in
the structural error term, for practical purposes they are best expressed as standard
linear moments augmented by a bias-correction term. In our econometric framework
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we also introduce a number of covariance restrictions, which correspond more closely
to the second-order moments introduced by Lee (2007a) and appearing in many other
studies, and that lead to efficiency improvements.5

We propose a GMM approach for the joint estimation of both social effects and all
other parameters of our model. We derive the asymptotic properties of the resulting
estimator and we evaluate its performance in Monte Carlo simulations. Furthermore,
we showcase it empirically by applying it to the setting and data from the study by
De Giorgi et al. (2010), which is about peer effects in the classroom between students
of Bocconi University in Italy. Although peer groups are formed exogenously in that
setting, it is arguable that the observable characteristics of students – such as their
high school grades – are cross-correlated in a predictable fashion, e.g. as a function of
two students’ geographical provenance. Indeed, the estimates of peer effects based on
an application of our method which accounts for geography-driven cross-correlation
are typically smaller in magnitude compared to customary approaches, and often not
statistically significant. This pattern holds under specific assumptions about the de-
pendence structure, but is robust to perturbations of it. This echoes an observation
we draw from Monte Carlo simulations: our approach can still outcompete the alter-
natives under misspecification of the cross-correlation between the error term and the
observable characteristics. Overall, we interpret these results as a warning against
the incautious interpretation of observed cross-correlations in individual outcomes as
the result of some structural, behavioral mechanisms such as peer effects.

It is useful to elaborate upon our contribution to the econometrics of social effects.
Most studies in this tradition either maintain the assumption that the model’s error
term is conditionally independent of the observable characteristics and the structure
of interactions, or they assume structures of dependence which are not as general and
potentially pervasive as ours, and which hence allow for relatively simple solutions.6

Obviously, the spatial econometrics literature has examined correlated unobservables
at length (Kelejian and Prucha, 1998, 2007, 2010; Kapoor et al., 2007; Drukker et al.,
2013, 2023), yet individual covariates are typically assumed exogenous in such studies.

5Many contributions to the econometrics of social and peer effects have explored the identification
power of covariance restrictions and quadratic moment conditions more generally (e.g. Glaeser et al.,
1996; Moffitt, 2001; Graham, 2008; Davezies et al., 2009; Pereda-Fernández, 2017; Rose, 2017a).

6The leading case is given by Bramoullé et al. (2009), who allow for fixed effects specific to each
of the multiple “networks” that make up their samples. To remove these effects, they propose local
data demeaning procedures that precede their main two-stages estimation approach.
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In a recent survey of the literature about peer effects in networks, Bramoullé et al.
(2020) discuss several randomization-based attempts aimed at addressing endogeneity
in the composition of peer groups: a problem which is distinct, albeit related, to that
of correlated effects. The survey cites an earlier, incomplete version of our paper as the
only recent contribution that attempts a structural approach to address the issue of
generalized correlated effects, a method potentially amenable to observational studies.
Our idea of exploiting the very spatial structure of endogenous cross-correlation for
the sake of identification builds upon some previous work by Zacchia (2020).7

The remainder of this paper is organized as follows. Section 2 presents our model
and the endogeneity specification that we analyze. Section 3 details on the conditions
for the identification of social effects. Section 4 introduces our GMM estimator and
its asymptotic properties. Section 5 assesses its performance in Monte Carlo simula-
tions. Section 6 discusses our empirical application of the proposed estimator. Lastly,
Section 7 concludes the paper. An Appendix provides key mathematical proofs; while
also elaborating on other selected aspects of our analysis.

2 Model

2.1 Description

We examine an econometric model that relates K + 1 observable variables with one
another: a vector of outcomes y of dimension N , and a matrix of explanatory variables
X of dimensionN×K. Here, N is the sample size; the dependence of algebraic objects
on N is, for simplicity, for the moment treated as implicit in our notation. Our model
is summarized by the following system of equations:

y = αι+ βGy +Xγ+GXδ+ ε (1)

X∗,k = x̃k + ξkCkε for k = 1, . . . , K (2)

ε = (I+ψE)υ, (3)

where υ is a vector of dimension N that collects the fundamental disturbances of our
model, which we distinguish from the structural errors ε; ι is a vector of dimension

7Zacchia (2020) analyzes a model of R&D spillovers in which firms’ unobservables are correlated
in a network of R&D relationships, and are simultaneous to the R&D of connected firms. To identify
spillover effects, he constructs IVs motivated on the finite empirical spatial correlation of R&D.
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N whose all elements equal one; G, E and Ck (for k = 1, . . . , K) are N ×N matrices
whose interpretation is elaborated next;8 for k = 1, . . . , K, X∗,k represents the k-th
column of X, while x̃k is a random vector of dimension N that we call the independent
component of X∗,k; lastly, the system features 3 (1 +K) parameters, which we collect
as ϑ = (α,β,γ,δ) and θ = (ϑ,ξ,ψ), and where γ = (γ1, . . . ,γK), δ = (δ1, . . . , δK)

and ξ = (ξ1, . . . , ξK) are parameter vectors of dimension K.
Equation (1) is our main structural equation: an augmented9 SAR model. Its key

element is the “spatial lag” Gy, which is governed by the spatial weighting matrix G,
also called adjacency matrix in network settings. The elements gij of this matrix (for
i, j = 1, . . . , N) represent the intensity of social interactions directed from observation
j to observation i. In a peer effects setting, for example, a higher value of gij denotes a
stronger influence of j on i. The parameter β associated with the spatial lag encodes
the magnitude of social effects; this interpretation follows from the derivation of (1),
which is standard in the literature (and that we also revisit in the Appendix), as an
equilibrium relationship in a game of social interactions. The parameters δ represent
instead the contextual, direct effects of an observation’s socio-economic connections on
its own outcomes. Under the terminology introduced by Manski (1993), parameters
β and δ are called the endogenous and exogenous effects, respectively. We adopt the
following assumption, which is standard in the literature.

Assumption 1. Bounded adjacencies: matrix G has a zero diagonal, β ∈ (βL, βU)

is restricted to an interval such that matrix (I− βG) is non-singular, and both G and
(I− βG)−1 are uniformly bounded in absolute value for both row and column sums.

We impose otherwise no restriction on G. In network settings, in particular, (1) can
flexibly accommodate interactions that occur either in a large network with a single
connected component, or in multiple, smaller, distinct networks.10

Expression (2) is the key innovation of our model: it introduces, as we designate
it, a “spatial linear endogeneity” (SLE) specification for the explanatory variables in
X. In particular, (2) specifies that every column of X depends on the structural errors
ε in a linear fashion through the multiplicative term ξkCk. We refer to the collection

8It is implicitly understood that in (3) and elsewhere, I is an identity matrix of dimension N×N .
9Under Elhorst’s (2014) classification of spatial econometric models, (1) is recognized as a “Spatial

Durbin Model” due to the inclusion of the GX term.
10In a similar vein, G can accommodate directed or undirected, weighted or unweighted networked

structures of interaction.
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{Ck}Kk=1 as the model’s characteristic matrices ; unlike the corresponding parameters
ξ, we treat them as known by the econometrician. Therefore, (2) describes a scenario
where the econometrician is aware that the covariates in X endogenously depend on
ε according to a pre-determined spatial pattern, but does not know the magnitude of
this dependence. The choice of a characteristic matrix depends on one’s application;
for example, both Ck = I and Ck = I+G are potentially valid choices for any given
k. We impose no other restriction not contemplated by the following assumption.

Assumption 2. Bounded characteristics: all characteristic matrices in {Ck}Kk=1

are uniformly bounded in absolute value for both row and column sums.

This assumption disciplines the variance of X. Later in this section, we elaborate on
examples and scenarios that are well accommodated by our SLE specification in (2).

The “independent components” x̃k, as specified in (2) for k = 1, . . . , K, capture the
part of each explanatory variable that is exogenous to ε. In a schooling context, for
example, family background likely correlates with unobserved ability as well as with
other factors. Let X̃ be the N ×K matrix that isolates all independent components
of X, such that X̃∗,k = x̃k for k = 1, . . . , K. We assume the following about X̃.

Assumption 3. Exogenous independent components: matrix X̃ is exogenous,
non-stochastic, bounded and has full column rank K; in addition, all its columns are
linearly independent of ι, and limN→∞N−1X̃TX̃ exists and is nonsingular.

Assumption 3 adapts standard full rank conditions to our model, while establishing
exogeneity of X̃. The latter in particular loads (2) with additional interpretation. We
think of (2) as a set of structural equations that disentangle the exogenous from the
endogenous components of each explanatory variable. This raises questions about the
consequences of misspecification in our model: an issue examined later in the paper.

Lastly, (3) specifies a first-order spatial moving average, SMA(1), for the structural
error terms ε. While many studies in this literature focus on autoregressive processes
for the error term (among the others: Kapoor et al., 2007; Kelejian and Prucha, 2010;
Drukker et al., 2023) we entertain the SMA(1) case since it more closely aligns with
our network-based applications of interest. In fact, when E = G and the elements of
υ are mutually independent, (3) implies zero correlation between the structural errors
of observation pairs at three or more degrees of separation.11 Regardless, as for other

11In a study about the health outcomes of children, Christakis and Fowler (2013) find that most
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models in the literature, it is conceptually easy (albeit tedious) to extend our results
to spatially-autoregressive-and-moving-average processes of indeterminate order for
the structural errors.12,13 We make the following assumptions about the fundamental
disturbances υ, which drive the errors ε and thus, the endogenous components of X.

Assumption 4. Fundamental disturbances: it is E [υ] = 0, and:

Σ ≡ E
[
υυT

]
= diag

(
σ2
1, . . . ,σ

2
N

)
=


σ2
1 . . . 0
... . . . ...
0 . . . σ2

N

 ,
with σ2

i ∈ (0,∞) for i = 1, . . . , N . Furthermore, for some d > 0, E
[
|υi|4+d

]
<∞ for

i = 1, . . . , N .

Thus, the elements of υ are mutually independent and display heteroschedasticity of
arbitrary form, as in many contributions to the spatial econometrics literature (e.g.
Kelejian and Prucha, 2010; Lin and Lee, 2010; Liu and Saraiva, 2019, and more). We
also make the following assumption about the primitives of the SMA(1) process.

Assumption 5. Spatial MA errors: matrix E has a zero diagonal, ψ ∈ (ψL, ψU)

is restricted to an interval such that matrix (I+ψE) is non-singular, and both E and
(I+ψE)−1 are uniformly bounded in absolute value for both row and column sums.

We finalize the description of the model by making one more assumption.

Assumption 6. Exogenous spatial matrices: the adjacency matrix G, the SMA
matrix E and the characteristic matrices {Ck}Kk=1 are all exogenous.

Assumption 6 is standard in spatial econometrics: we extend it to the characteristic
matrices, treating the spatial breadth of SLE that these capture as unrelated to the
model’s disturbances. As far as G is concerned, we acknowledge the growing interest

variables of interest display spatial autocorrelation in the friendship network only up to two degrees
of separation. Zacchia (2020) observes the same pattern in his study on R&D spillovers.

12In a previous version of this paper, we provided identification results for this more general case
under a slightly modified setup with homoschedastic υ.

13Specifying such a general data generation process for ε can go a long way to approximate the true
structure of spatial dependence. In network settings, this would help elude a critique by Goldsmith-
Pinkham and Imbens (2013), who lament the lack of general results that enable inference when all
observations are related through a large network and whose unobservables are mutually dependent.
As pointed out by an anonymous referee, however, identification can be weak under such a strategy.
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for the implications of endogenous network formation in models about social effects.14

However, assuming that G is exogenous helps isolate and address the SLE mechanism:
as we elaborate in the discussion of our empirical application, even randomizing the
peer groups is not sufficient to solve the problem induced by SLE if spatial correlation
in the unobservables is pervasive and covariates are even mildly endogenous.

2.2 Discussion

It is useful to elaborate on the relationship of this model with the broader literature,
as well as on its relevance for actual empirical research.15 The SLE specification in (2)
is fairly general; thus, it can accommodate many instances of endogeneity from actual
applications (some examples of which are discussed later in this section). At the same
time, it can be seen as a restricted version of a more general simultaneous equations
model (SEM). In fact, for k = 1, . . . , K and ςk = ξ

−1
k x̃k, (2) can be rewritten as:

X∗,k =
(
ξ−1
k I+ γkCk + δkCkG

)−1
Ck

[
(I− βG)y − αι−X\kγ\k −GX\kδ\k

]
+ ςk

(4)
provided that ξk ̸= 0 and

(
ξ−1
k I+ γkCk + δkCkG

)
is nonsingular (here, X\k, γ\k and

δ\k denote respectively X, γ and δ, but deprived of their k-th column or element).
Interpreting ςk as an exogenous and stochastic16 unobserved determinant of X∗,k, (4)
appears shaped as a structural equation that links the (endogenous) variable X∗,k to
the other K endogenous variables of the model, including y. SEMs featuring spatial
lags have been extensively studied in spatial econometrics (Kelejian and Prucha, 2004;
Liu, 2014, 2020; Liu and Saraiva, 2015, 2019; Yang and Lee, 2017; Cohen-Cole et al.,
2018); in these studies, identification of the structural parameters is typically obtained
via appropriate (exclusion) restrictions, as in classical SEMs. By contrast, our model
establishes restrictions implicitly in (4), and through the characteristic matrices Ck.
We show that if the latter are known by the econometrician, θ is identified without
resorting to exogenous (instrumental) variables, untypical in classical SEMs.

14Extant proposals to address this issue include: (i) the Bayesian method by Goldsmith-Pinkham
and Imbens (2013); (ii) control function approaches, as in Arduini et al. (2015) as well as Johnsson
and Moon (2021): both build on Blume et al. (2015) and Graham (2017); (iii) a GMM framework
for panel data, as in the more recent contribution by Kuersteiner and Prucha (2020).

15We express our gratitude to two anonymous referees who encouraged us to develop many of the
ideas exposed in this discussion.

16This departure from Assumption 3 helps illustrate the connection between our model and SEMs.
Non-stochasticity of X̃ can be relaxed at an expositional cost for our model’s asymptotic analysis.
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An implication of this relationship is that by construction, the parameters of the
model cannot be straightforwardly interpreted in a causal sense. Thus, for example,
any parameter γk (for k = 1, . . . , K), cannot be used to draw conclusions about the
“effect” of X∗,k on y (because the two are simultaneous) unless in the real world one
can implement policies that manipulate the independent component x̃k. Suppose for
example that (1) is a model about firm productivity and R&D spillovers: hence, the
column of X that encodes R&D would include an endogenous component (ξkCkε),
which depends on firm choices, and an exogenous one (x̃k), which incorporates factors
subject to external manipulation, such as governmental grants to perform R&D. It
is more difficult to imagine such policies in other settings, like peer effects at school.
Nevertheless, our model can be used for two main purposes. First, it allows to test for
the existence of social, spillover and network effects of various sort that are embodied
in (β,δ), which is interesting per se. Second, knowledge of θ identifies the “impulse
response functions” that describe how a shock in ε propagates through socio-economic
agents as a function of the matrices that describe cross-dependence (G, E and the Ck

matrices) and how it ultimately affects y. An economically relevant example is that
of a technology shock in a setting that features knowledge spillovers between firms.

When interest falls exclusively on testing for the existence of the key “endogenous”
social effect β, it is fair to wonder if the model we propose is necessary at all. In fact,
β can be identified (as implied by typical econometric models of social effects) via a
single exogenous covariate, or an external instrument. There are at least three reasons
to employ our model in practice. First, the literature in both economics and sociology
emphasizes the need to disentangle endogenous (β) from exogenous (δ) effects. Our
model allows to estimate exogenous effects for endogenous variables in X. Second, it
may be difficult to observe exogenous covariates or instruments, especially in network
settings. For example, in our empirical application discussed in Section 6 we suspect
even predetermined variables (like the gender or geographical origin of undergraduate
students from Bocconi university) to be endogenous, due to issues of self-selection. In
addition, under spatial correlation in the unobservables as per e.g. (3), endogeneity
propagates in the network and invalidates standard moment conditions (built around
higher order spatial lags of the exogenous variable/instrument) that are typically used
to identify β. Third, identification based on a single covariate or instrument may be
weak, possibly resulting in imprecise estimates. Our estimation approach can instead
yield efficiency improvements, provided that SLE is correctly specified.
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2.3 Examples

The applicability of our framework in actual empirical analysis largely hinges on the
econometrician’s ability to correctly specify the characteristic matrices that determine
the SLE specification per (2). Here we offer a number of examples where the choices
about Ck appear natural. To facilitate this discussion, we momentarily impose K = 1

and drop the k subscripts where normally due; in addition, we use xi, x̃i, yi and εi to
denote individual elements of X, X̃, y and ε, respectively.

Structural endogeneity. In some settings, economic theory suggests particular
spatial structures for SLE. Consider, for example, the classical endogeneity problem
in the estimation of production functions (Marschak and Andrews, 1944). If xi is the
only variable log-input in a Cobb-Douglas setting, then C = I, as profit maximization
induces firms to scale, in a predictable fashion, their input usage according to their
unobserved shocks εi. Suppose now that xi represents knowledge capital, which leads
to productivity spillovers among firms according to G, as in econometric specifications
that follow the tradition by Jaffe (1989).17 Then, economic theory suggests that firms’
choice of xi would reflect both their own shock εi and that of other firms directly or
indirectly related through the network G, because investment in knowledge is a public
good game. Thus, one can show that in equilibrium it is C = (I− aG)−1, where a ≥ 0

depends on the information structure of the game (the closer the game to a complete
information benchmark, the higher a).

Segregated groups. In some settings, it is natural to partition the population
of interest between groups subject to “common shocks” that affect observables xi and
unobservables εi alike. In a schooling environment, for example, the quality of teachers
and the overall resources made available to a pupil (xi) may endogenously depend on
their preferences and/or the ability (εi) of their classmates. This can be induced via
an explicit school-level allocation mechanism, if more motivated students are assigned
the best resources, or conversely, if more disadvantaged ones are compensated with
extra support. Hence, C would display a “segregated” group structure derived from
that of classrooms.18 Matrices C and G need not be related: social interactions can

17These are essentially variations of (1) with β = 0 and more exclusion restrictions on δ.
18By “segregated” group structure we refer to a regular network topology such that, for any triad

(i, j, k), if i and j are connected they are also either both connected or both disconnected to k (hence,
transitivity applies), but at least some agent pairs are disconnected. This implies a block structure
of the adjacency matrix: using C as an example, if cij ̸= 0 then cik ̸= 0 ⇔ cjk ̸= 0.
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transcend classrooms, while at the same time, two classmates may not be friends.
This is exemplified in Graph 1, which is inspired by typical schooling environments.

i

j k

ℓ

Group A Group B

Graph 1: A Cross-Group Friendship Network

Notes. In this graph, nodes (e.g. i, j, k, ℓ) represents observations, edges denote social
interactions (e.g. “friendships”) embodied in G, whereas groups of observations bound
within dash-dotted squares depict groups or blocks represented by C.

Induced homophily. The issue of homophily in networks: the observed tendency
of connections to be more likely between pair of nodes that share more characteristics,
has attracted the attention of numerous social scientists, including econometricians
(e.g. Graham, 2017). Usually, homophily is explained via network formation: ex ante
similarities facilitate the establishment of links. The reverse causal mechanism (from
links to similarities) has attracted less attention, but is no less plausible. Consider a
scenario where in a school, connections are externally set by some agent, like a teacher
or a trainer. It is likely that as a result of peer effects, students who are thus bound
would develop similarities in dimensions xi such as sport preferences and attitudes.
If xi is then incorporated in a main model of peer effects on other outcomes yi (such
as health-related ones), this instance of induced homophily can be accounted for via
a SLE specification with, say, C = I+G. Note that this simple scenario lends itself
naturally to a SEM interpretation of our model, as per (4).

Measurement error. SLE can easily accommodate measurement error.19 Let
the “true” model be:

yi = α+ β
∑
j ̸=i

gijyj + γx̃i + ηi

where ηi is some “true” error term, xi = x̃i + ωi, and ωi is measurement error in x̃i.
19We express our thanks to an anonymous referee who prompted us to develop this observation.
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The econometrician can only observe xi, hence the actual error term is εi = ηi −γωi.
SLE is isomorphic to this stylized model if C = I and E [ηi|ωi] = (ξ−1 + γ)ωi, but
the insight applies more generally.

3 Identification

3.1 Preliminaries

This section illustrates results about the identification of our model’s parameters, and
some extensions. Before proceeding, a preliminary consideration is in order. There is
in fact a particular case where identification is trivial. Let Ck = C for k = 1, . . . , K:
if C has rank less than N , researchers may find a matrix B of dimension N ×N such
that BCε = 0 and model (1) can be reshaped as:

By = αBι+ βBGy + γBX+ δBGX+Bε, (5)

a transformed SAR model which is identified and estimable via standard approaches
since, by construction, Bε is independent of BX = BX̃. A particular example is that
where C is a block matrix describing “segregated” groups (as in the second example
from the previous subsection) and whose elements are identical within each group; as
a result, Cε would feature identical values within a group and B would be a simple
group-demeaning matrix.20 Similar solutions might be found even if the characteristic
matrices differ across covariates (for example, if one matrix Ck describes segregated
groups that nest those of another matrix Ck′ , for k ̸= k′). Our approach is relevant if
solutions of this sort are unavailable, or researchers seek efficiency gains. However, our
Monte Carlo simulations show that transformations of this sort can yield estimates
that are too imprecise, arguably because they remove much of the relevant statistical
variation even if the rank of C is fairly low.

3.2 Moments

Our identification results are based on a set of linear and quadratic moment conditions
that build on the tradition initiated by Lee (2007a). A key characteristic of our setup

20This is analogous to the within transformation for the removal of fixed effects in panel data or to
the data transformations by Bramoullé et al. (2009) that remove network-specific common effects.
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is that the linear moments feature an explicit bias correction term derived from more
primitive zero-covariance conditions; these are actually nonlinear in the parameters.
To illustrate, let Qq ≡ Gq−1X for q ∈ N. Because X is endogenous, for any integer q it
is E

[
QT

q ε
]
̸= 0.21 However, our setup suggests a natural set of appropriate moments

built around the independent components X̃, that are by construction independent
of ε (Assumption 3). Consider the following set of K moment conditions, for q ∈ N:

E
[(

Gq−1X̃
)T

ε (θ)

]
= 0, (6)

where ε (θ) = (I− βG)y−αι−Xγ−GXδ. Note that, by the SLE specification in
(2), for k = 1, . . . , K the k-th row of (6) can be recast as:

E
[
(X∗,k − ξkCkε (θ))

T (Gq−1
)T

ε (θ)
]
= 0. (7)

The quadratic form inside the expectation above is nonlinear in θ. The expression
on the left-hand side of (7), however, can be developed as follows:

E
[(
Gq−1X∗,k

)T
ε (θ)

]
= ξkE

[
εT (θ)

(
Gq−1Ck

)T
ε (θ)

]
= ξkTr

((
Gq−1Ck

)T E
[
ε (θ) εT (θ)

])
= ξkTr

(
Υ (θ)Gq−1Ck

)
where:

Υ (θ) ≡ (I+ψE)E
[
diag

(
υ21 (θ) , . . . , υ

2
N (θ)

)]
(I+ψE)T

with υ (θ) = (υ1 (θ) , . . . , υN (θ)) = (I+ψE)−1 ε (θ). It is thus straightforward to
specify the bias-correction terms associated with moments of the E

[
QT

q ε
]

form: these
are Q vectors of dimension K collected as:

λT
1,q (θ) =

[
λ1,q,1 (θ) . . . λ1,q,K (θ)

]
for q = 1, . . . , Q and where, for k = 1, . . . , K, it is:

λ1,q,k (θ) = ξkTr
(
Υ (θ)Gq−1Ck

)
. (8)

21In Addendum A (Appendix) we analyze in more detail the bias entailed by conventional methods
under our assumptions. This helps appreciate how the bias depends on the topology of the problem.
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Accordingly, we formulate 1 +QK “linear” moments expressed as:

E [m1 (θ)] = E
[[
m1,0 (θ) mT

1,1 (θ) . . . mT
1,Q (θ)

]T]
= 0 (9)

where m1,0 (θ) = ι
Tε (θ) and, for q = 1, . . . , Q, m1,q (θ) = QT

q ε (θ)− λ1,q (θ). While
these moments are linear in ε (θ), they are actually quadratic in the parameters θ,
because of the bias-correction terms λ1,q (θ).

In addition, we establish P quadratic moments expressed as follows:

E [m2 (θ)] = E
[[
m2,1 (θ) . . . m2,P (θ)

]T]
= 0 (10)

where, for p = 1, . . . , P , m2,p (θ) = εT (θ)Ppε (θ)− λ2,p (θ), Pp is some appropriate
N ×N matrix, while

λ2,p (θ) = Tr (Υ (θ)Pp) . (11)

We make the following standard assumption about the Pp matrices.22

Assumption 7. Bounded quadratic moments: The {Pp}Pp=1 matrices are linearly
independent of one another and are all uniformly bounded in absolute value in both
row and column sums.

Since at least Lee (2007a), quadratic moments like (10) are motivated on the efficiency
improvements that they deliver in a GMM estimation framework, as they leverage the
observed correlations between observations. We elaborate on the appropriate choice
of the Pp matrices in Section 4. Typically, these matrices are required to have a zero
trace (under homoschedasticity) or, more generally, a zero diagonal for εT (θ)Ppε (θ)

to be zero in expectation. By introducing the bias-correction terms (11) into (10) we
can dispense with this requirement, thus keeping the framework more general.

3.3 Result

We are now ready to express some sufficient conditions about the linear moments (9)
that ensure identification of θ.

22Boundedness of the Qq matrices, another standard requirement, is here implied by Assumptions
1, 2 and 3.
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Theorem 1. General Identification Result. Under the maintained assumptions,
θ is globally identified if the following conditions hold simultaneously:

(i) βγk + δk ̸= 0 for at least one k = 1, . . . , K;

(ii) the matrices I, G, G2 and G3 are linearly independent of one another;

(iii) for all k = 1, . . . , K, the four traces gathered in the following vector:

λ̃k ≡
[
Tr (Ck) Tr (GCk) Tr (G2Ck) Tr (G3Ck)

]T
are all simultaneously nonzero; moreover, ξk ̸= 0.

Proof. See the Appendix; the proof strategy is adapted from Lee and Liu (2010).

We find it useful to illustrate the logic of the proof in a simplified homoschedastic
setting. Suppose that K = 1 (all k subscripts are dropped), Σ = I, δ = ψ = 0, and
Q = 3. Thus, the model reads as y = αι + βGy + γx̃ + (I+ γξC)υ. Because x̃ is
unobserved, identification rests on “bias-corrected” linear moments as in (9); here we
abstract from quadratic moments. Let θ0 = (α0,β0,γ0, ξ0) be the “true” parameter
vector. In this simplified setting, one can show that an attempt to evaluate (9) at an
“impostor” structure θ̃ =

(
α̃, β̃, γ̃, ξ̃

)
returns:

E
[
m1

(
θ̃
)]

= [Π∗
0 +Π∗

1]
(
θ0 − θ̃

)
(12)

where, for G̃0 ≡ G (I− β0G)−1:

Π∗
0 = E


N ιTG̃0 (αι+ γx̃) ιTx̃ 0

x̃Tι x̃TG̃0 (αι+ γx̃) x̃Tx̃ 0

(Gx̃)T ι (Gx̃)T G̃0 (αι+ γx̃) (Gx̃)T x̃ 0

(G2x̃)
T
ι (G2x̃)

T
G̃0 (αι+ γx̃) (G2x̃)

T
x̃ 0

 ,

and:

Π∗
1 =


0 0 0 0

0 ξ0Tr
(
C
(
I+ γ0ξ0C

T
)
G̃T

0

)
ξ0Tr

(
CCT

)
Tr (C)

0 ξ0Tr
(
GC

(
I+ γ0ξ0C

T
)
G̃T

0

)
ξ0Tr

(
GCCT

)
Tr (GC)

0 ξ0Tr
(
G2C

(
I+ γ0ξ0C

T
)
G̃T

0

)
ξ0Tr

(
G2CCT

)
Tr (G2C)

 .
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In (12), matrix Π∗
0 results from the exogenous component of the model (x̃) while Π∗

1

follows from the endogenous part (e.g. ξCε). While neither matrix has full rank, one
can verify that their sum does so long as ξ0 ̸= 0 and the fourth column of Π∗

1 is not
zero, i.e. condition (iii) of the Theorem holds. Hence, for (12) to equal zero θ̃ = θ0

must hold. The proof of Theorem 1 develops this argument for the general case.
This analysis clarifies the role of condition (iii) of the Theorem: it simply requires

that the SLE specification per (2) is meaningful, i.e. the K covariates are actually all
endogenous. Ultimately, this is a moot requirement: if some covariates are exogenous,
but researchers still want to estimate ϑ in its entirety (for example, because interest
falls on elements of δ for specific endogenous covariates), they can proceed by simply
placing appropriate restrictions on ξ in (9). Conditions (i) and (ii) are more standard
in models about peer and network effects, and spatial econometrics more generally.
The former requires that social and contextual effects do not cancel out for at least
one observable characteristic, as otherwise β and δ cannot be disentangled. The latter
requires increasingly higher-order powers of G to vary in their identification power:
in networks this occurs for example when connections are not transitive (Bramoullé
et al., 2009). With respect to standard models, however, condition (ii) extends to one
additional degree distance (observe how it involves G3). This is necessary to establish
enough linearly independent moment conditions that also identify ξ.23

More intuition about identification can be obtained in two ways: algebraic-statistic
and graphical. We develop the former first. In the same simplified setting we exploited
to derive (12), the reduced form for y can be expressed as:

y =
∞∑
s=0

βsGs [αι+ γx̃ + (I+ γξC)υ] . (13)

Thus, by an argument à la Kelejian and Prucha (1998) the model is identified via a set
of instruments of the form Gsx̃, which are unfeasible since x̃ is unobserved. Expression
(13) also suggests that if x̃ and C are both observed, ξ is identified separately from γ.
Expression (7), instrumental to the construction of our linear moments, embed both
ideas: it reshapes the “unfeasible” moments (6) so that the independent component of
x is backed up from its constituent parts. This is possible as ξ is internally identified
thanks to the knowledge of the characteristics matrix C; again, (13) suggests why this

23In light of the discussion from Section 2.2, we observe an analogy between our condition (ii) and
identification conditions developed for SEMs with spatial lags, like in Liu and Saraiva (2019).
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is the case. In fact, the endogenous component of x propagates through the structure
of social or spatial interactions G, and is therefore reflected at higher-order distances.
This further clarifies why I, G, G2 must be linearly independent of G3 too.

To appreciate the graphical intuition, consider the four observations (i, j, k, ℓ) in-
volved in both the network and the group structure from Graph 1. According to (13),
the variation of yi is explained by the variation of all the elements in (xi, xj, xk, xℓ),
albeit through different mechanisms and “effects” (parameters). This is represented in
Graph 2, which “zooms in” the four nodes in question and in addition, displays some
labeled dashed arrows that indicate what parameters does each observed characteris-
tic contribute to identify. For example, both nodes j and ℓ are connected to i; hence,
variation in both xj and xℓ helps identify the combined parameter γβ. However, xj
(unlike xℓ) also contributes to the identification of ξ, because node j (unlike node ℓ)
belongs to the same “group” as node i. Intuitively, this identifies ξ. In addition, the
direct effect of xi on yi contributes to the identification of both γ and ξ. As a result,
a comparison of the “effect” of xi on yi against that of xj on yi allows, via knowledge
of ξ, to disentangle γ from β, as in models with exogenous covariates.

xk

xj

yi xℓ

xi

γβ

γβ, ξ

γβ2, ξ

γ, ξ

Group A Group B

Graph 2: Identification: graphical intuition

Notes. This graph elaborates the analysis of nodes (i, j, k, ℓ) from Graph 1, which are
related through both a network structure G (represented by circles and straight lines)
and a “grouped” characteristics structure C (delimited by dash-dotted lines). Directed
dashed arrows that connect the variables encapsulated in either node are labeled by to
the parameter combinations that every observable characteristic on the sending side of
the arrow (xi, xj , xk or xℓ, with yi always on the receiving side) contributes to identify
per (13). Variable xi is enclosed in a dotted circle to remark that it does not arise from
a node (an observation) different from yi’s.
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3.4 Extensions

Our framework, and its associated identification results, can be extended in several
directions. Here we briefly outline two such extensions, which we find to be especially
relevant for some of the network-based applications that inspired our model; for each
of them, we express the identification conditions in specific corollaries to Theorem 1.
We leave the analysis of other extensions to future work.

Network-level fixed effects. As mentioned in Section 2, in network settings our
model can accommodate both the case where adjacency matrix G represents a large
network with a unique connected component (for example, an input-output network
of firms) and that where it describes multiple disconnected networks (say, friends from
different classes or schools). In the latter case, G has a block-diagonal structure. With
several separate networks, researchers may want to estimate an extended model like:

y = Dα∗ + βGy +Xγ+GXδ+ ε, (14)

where theN×D matrix D collectsD dummy variables, each encoding an observation’s
association with a particular block (network) of G, while α∗ = (α1, . . . ,αD) are the
corresponding “network-level” fixed effects.

Corollary 1. If the model of interest is (14), the parameters θ∗ ≡ (α∗,β,γ,δ,ξ,ψ)

are identified if, in addition to the conditions expressed in Theorem 1, also matrix G4

is linearly independent of matrices I, G, G2 and G3.

Proof. This follows straightforwardly from “network differencing” equation (14) by
pre-multiplying the data (X,y) by I−G as in Bramoullé et al. (2009). The identifi-
cation of the differenced model would follow as per our previous analysis with α = 0;
the resulting moments are a function of G4 which thus must be linearly independent of
its lower powers. The fixed effects α∗ are residually identified as a subnetwork-specific
set of intercepts.

With this approach, the error term is transformed as (I−G) ε. Hence, for the sake
of identification and estimation the bias-correction terms λ1,qk in (9) and λ2,p in (10)
are transformed accordingly (the calculations are straightforward).

Overall connection strength. Occasionally, researchers may want to estimate
the direct effect on y of a measure that represents the total intensity or “strength”
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of the network connections directed to each observation, which we denote by ḡ = Gι

(the indegree vector). Thus, the structural equation of interest becomes:

y = αι+ βGy +Xγ+GXδ+ ϕḡ + ε, (15)

where ϕ is a new parameter of interest.24 Since, under Assumption 6, G is exogenous,
the extended identification conditions are straightforward in this case.

Corollary 2. In (15), ϕ is identified separately from θ if ḡ is linearly independent
of ι and all columns of X̃.

Proof. Extend (9) with additional moments of the form E
[
(Gq−1ḡ)

T
ε (θ,ϕ)

]
= 0,

for q = 1, . . . , Q. An revised proof of Theorem 1 holds under this extended setup.

Hence, identification requires that the network indegree ḡ is neither constant (which
rules out “row-normalized” specifications of G that are especially popular in the peer
effects literature) nor perfectly predicted by the exogenous, independent components
of X. The evaluation of the latter requirement depends on one’s application.

4 Estimation

The moment conditions that support our main identification results lend themselves
naturally to GMM estimation. In this section we show how the estimation framework
introduced by Lee (2007a) can be adapted to our model with SLE. In what follows,
we denote the “true” parameter values as θ0 and we introduce N subscripts to denote
the dependence of a particular algebraic object (random variable, vector or matrix)
on the sample size. We make also make an additional assumption.

Assumption 8. Parameter space: θ0 ∈ Θ ⊂ R3(1+K), that is, θ0 belongs to the
interior of a parameter space denoted as Θ which is compact and convex.

Assumption 8 is standard. With regard in particular to the two parameters β and ψ,
it complements Assumptions 1 and 5.25

24In Addendum B, we specify a model of strategic interaction that microfounds (15). In this game,
players take choices about a costly public good (“effort”). According to the model, the identification
of ϕ backs up primitive parameters interpreted as the private and social returns of effort, respectively.

25These implicitly constrain β and ψ to lie within an interval that is symmetric around zero and
whose length is at most twice the inverse of the spectral radius of G and E, respectively. As a result,
(I− βG) and (I+ψE) are both non-singular (see the discussion by Kelejian and Prucha, 2010).
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We collect all the moment conditions of the model as:

E [mN (θ0)] = E

[
m1,N (θ0)

m2,N (θ0)

]
= 0. (16)

where m1,N (θ) and m2,N (θ) denote respectively the vectors of “linear” and quadratic
moments (inclusive of the bias-correction terms) as in (9) and (10).26 The construction
of appropriate sample analogs of (16) is hindered by the fact that the bias-correction
terms are functions of the unknown matrix ΣN . We circumvent this issue by replacing
those terms with appropriate consistent estimators of them. Thus, for a given θ ∈ Θ,
we construct the following sample moments:

mN (θ) ≡ 1

N

[
m1,N (θ)

m2,N (θ)

]
. (17)

Here, the linear moments are mT
1,N (θ) =

[
m1,0,N (θ) mT

1,1,N (θ) . . . mT
1,Q,N (θ)

]
with

mT
1,q,N (θ) = Qq,NεN (θ)−λ1,q,N (θ) for q = 1, . . . , Q, and where λ1,q,N (θ) is a vector

of dimension K whose elements are expressed, for k = 1, . . . , K, as:

λ1,q,k,N (θ) = ξkTr
(
ΥN (θ)Gq−1

N Ck,N

)
.

The above is unlike (8) because ΥN (θ) here features no expectation:

ΥN (θ) = (IN +ψEN) diag
(
υ21 (θ) , . . . , υ

2
N (θ)

)
(IN +ψEN)

T . (18)

Similarly, the quadratic moments are mT
2,N (θ) = [m2,1,N (θ) . . . m2,P,N (θ)] where,

for p = 1, . . . , P , m2,p,N (θ) = εTN (θ)Pp,NεN (θ)− λ2,p,N (θ) and

λ2,p,N (θ) = Tr
(
ΥN (θ)Pp,N

)
,

which replaces (11). Our GMM estimator is thus:

θ̂GMM = argmin
θ∈Θ

mT
N (θ)WNmN (θ) , (19)

26In practical implementations of our GMM estimator (e.g. in the Monte Carlo) we also entertained
alternative mathematical formulations of the “linear” moments based on (7); as expected, the results
are similar. We noted, however, that the baseline formulation that features the bias-correction terms
λ1,q (θ) is computationally faster, more convenient; we thus maintain it as our favorite.
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where WN is a suitable weighting matrix that complies with the following assumption,
which is key to ensure finite moments of (19).

Assumption 9. Weighting matrix: WN has a probability limit: WN
p→ W0; it

can be decomposed as:
WN = AT

NAN ,

where AN is a conformable matrix such that AN
p→ A0 with AT

0A0 = W0, and with
rank (AN) ≥ dim |θ|. In addition, AN is uniformly bounded in absolute value in both
row and column sums, and all its elements are also bounded.

The asymptotic properties of θ̂GMM are established via the following result.

Theorem 2. Asymptotics of the GMM estimator. Under the maintained as-
sumptions, and while the identification conditions detailed in Theorem 1 hold, θ̂GMM

is a consistent estimator of θ0 and has the following limiting distribution:

√
N
(
θ̂GMM − θ0

)
d→ N

(
0,
[
JT
0W0J0

]−1
JT
0W0Ω0W0J0

[
JT
0W0J0

]−1
)

where Ω0 ≡ plimVar [mN (θ0)] and J0 ≡ plimE
[

∂
∂θTmN (θ0)

]
.

Proof. See the Appendix. The proof is based on the results by Lee (2007a), which in
turn rely on White (1996) as well as Kelejian and Prucha (2001).

To perform statistical inference in actual empirical applications, it is necessary to use
a consistent estimator of Ω0: its sample analogue is the most natural choice.27

As with analogous models in spatial econometrics, the efficiency of our estimator
depends on the choice of moments, more specifically the Qq,N and Pp,N matrices. In
the next section we provide limited evidence, via Monte Carlo simulations, that the
number and type of moments can affect the estimator’s finite sample performance.
Efficiency can be further improved by choosing optimal moment-weighting matrices
Qq,N and Pp,N . As in the analysis by Lin and Lee (2010) about the SAR model with
unrestricted heteroschedasticity, the optimal instrument matrices in our model would
also depend on the unknown matrix ΣN . Additional efficiency improvements may be
obtained with a two-step procedure (a first step delivers a consistent, but less efficient
estimator of θ; a second step updates the moments); however, we reserve the analysis
of this and other refinements of our proposed estimator to future work.

27Because Ω0 is a function of fourth-order moments of υN , its expression and that of its sample
analogues are convoluted; for the sake of exposition, they are provided in Addendum C.
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5 Monte Carlo

We evaluate the performance of our GMM estimator across Monte Carlo simulations
based on a simplified version of our model. Specifically, we allow for two covariates: an
exogenous one that we denote by w, and an endogenous one, written as x; we drop the
exogenous effects δ, and we enforce homoschedasticity. While in this section we focus
on one particular experiment (the “baseline”), we also examine other experiments that
differ in some details of the data generation process. To minimize the dependence of
our results from a specific topology of the adjacency, or spatial weighting matrix G,
in all the simulations or repetitions of an experiment, we generate a new matrix G;
in most experiments we do the same for characteristic matrices C. More specifically,
these matrices are randomly generated via the “small-world” algorithm by Watts and
Strogatz (1998) with constant parameters. In particular, we set the number of links for
each simulated observation at B = 2, and the link rewiring probability at b = 0.25.28

The following expression for the simulated values of y summarizes our d.g.p.:

y = (I− βG)−1 [αι+ γ (x̃+ ξσC (I+ψG)υy) + χw + σ (I+ψG)υy] ,

where: w is a vector ofN independent draws from the continuous uniform distribution
with support on (0, 1), which we leverage to compare the performance of our estimator
against one based on “external instruments;” χ is a real parameter; υy is a vector of
N independent draws from a standard normal distribution; while x̃ is generated as:

x̃ = 0.3 ·Hυx,

where υx are yet N more independent draws from the standard normal distribution,
and H is an N ×N matrix. When H ̸= I the independent component of x features
spatial correlation, which is arguably realistic. While in most simulations reported
here we set H = I+G (therefore, H varies across repetitions), we also experimented

28The small-world algorithm is initialized by ordering all observations are first ordered along a line
and connecting them to an even number of B neighbors; this defines an initial set of pairwise binary
associations g0,ij = g0,ji ∈ {0, 1}, with g0,ii = 0 for every node i. Subsequently, all links are subject
to random rewiring (the link is deleted, and one of the two involved nodes becomes connected with
a random third node) with probability b. This procedure yields an updated topology g1,ij = g1,ji
(still without self-links) with associated adjacency matrix G1. The final row-normalized adjacency
matrix is obtained as G = diag (G1ι)G1. If derived through a distinct random realization of this
algorithm, matrix C is obtained likewise. Our combined choices for B and b ensure a good overlap
between the adjacency matrices G and the characteristic matrix C across our experiments.

22



with different choices of H, and observed that these have no substantive bearing on
the results. In all our simulations we set N = 500 and σ = 0.05.

In all experiments, we compare nine estimators with one another. Four estimators
are variations of our proposed GMM estimator, where moments (17) are constructed
using a characteristic matrix, denoted by Ce which may or may not coincide with
that used in the d.g.p.: C. These four variations are summarized as follows; (1) one
based on a smaller set of moments, Q = 3 and P = 2, where P1 = I and P2 = G, and
C∗

e = C; (2) as the previous one but with more moments: Q = 4 and P = 3, where
P3 = G2; (3) one with even more moments: Q = 5 and P = 4, and where P4 = G3;
(4) one like the latter (more moments), but where the estimation algorithm employs
a “misspecified” characteristic matrix C∗

e = Ce ̸= C. In particular, in the baseline C

is randomly generated via the small-world algorithm (hence it most likely differs from
I+G), but C∗

e = I+G. Hence, through this exercise we assess the implications of an
incorrect choice of the characteristic matrix, and in particular, the arguably realistic
scenario where the econometrician believes that C and G capture the same patterns
of spatial correlation, but this is only partly or approximately correct. All four GMM
estimators return estimates for (α,β,γ,χ, ξ,ψ).

The next four estimators are a naïve OLS estimator which takes Gy, x and w as
independent variables, and three different 2SLS estimators based on the following set
of instruments:

Z ≡
[
ι w z Gz G2z

]
,

where z is either: (a) z = x, yielding an 2SLS estimator akin to the one proposed by
Bramoullé et al. (2009); (b) z = Gw, yielding a 2SLS estimator solely based on the
exogenous regressor and its spatial lags; or (c) z = Bx, where B is a matrix such that
BC = 0 as per the discussion in Section 3.2, yielding a consistent 2SLS estimator
based on transformations of x that are purged of the endogenous component.29 With
some abuse of terminology, we call the ninth estimator a 3SLS. Inspired by Kelejian
and Prucha (2004), we construct another 2SLS estimator based on a Cochrane-Orcutt
transformation of our model informed by 2SLS estimates with z = Gw.30 Hence, we

29In those experiments where the C matrices are by construction of full rank, we specify B as the
annihilator matrix based on the Moore-Penrose pseudoinverse C+: B = I−CC+.

30We are grateful to an anonymous referee for encouraging us to develop this specific comparison.
The model by Kelejian and Prucha (2004) features simultaneous equations, exogenous instruments,
and (unlike our model) spatially autoregressive errors. Our Cochrane-Orcutt transformation reflects
in particular our SMA errors.
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compare our GMM estimator to several simpler alternatives that are likely to occur
in the empirical practice. These simpler estimators return estimates for (α,β,γ,χ).

Table 1: Monte Carlo Simulations: baseline

Target
Parameter

Experiment 1, baseline: H = I+G; C = I+ a different small world; C∗
e = I+G

GMM1 GMM2 GMM3 GMM4 OLS 2SLSa 2SLSb 2SLSc 3SLS

α = 0.25 0.248 0.246 0.246 0.287 0.239 0.180 0.251 0.191 0.249
(0.027) (0.029) (0.031) (0.026) (0.008) (0.034) (0.028) (0.527) (0.160)
[0.063] [0.053] [0.051] [0.027] [0.009] [0.029] [0.055] [1.961] [0.533]
{0.943} {0.937} {0.913} {0.629} {0.000} {0.015} {0.055} {0.848} {0.248}

β = 0.40 0.402 0.403 0.404 0.369 0.410 0.461 0.399 0.453 0.399
(0.022) (0.024) (0.025) (0.021) (0.007) (0.030) (0.019) (0.469) (0.117)
[0.053] [0.044] [0.042] [0.023] [0.007] [0.025] [0.036] [1.835] [0.402]
{0.944} {0.943} {0.918} {0.616} {0.000} {0.000} {0.023} {0.571} {0.155}

γ = 0.50 0.200 0.200 0.200 0.244 0.280 0.268 0.279 0.227 0.349
(0.014) (0.014) (0.014) (0.012) (0.005) (0.008) (0.255) (0.446) (1.812)
[0.011] [0.010] [0.010] [0.007] [0.005] [0.008] [0.618] [2.934] [5.851]
{0.804} {0.799} {0.796} {0.014} {0.000} {0.000} {0.517} {0.877} {0.694}

χ = 1.00 1.000 0.999 0.999 1.004 0.998 0.987 1.000 0.988 1.000
(0.008) (0.008) (0.008) (0.007) (0.007) (0.010) (0.014) (0.120) (0.043)
[0.007] [0.007] [0.007] [0.005] [0.006] [0.009] [0.029] [0.422] [0.243]
{0.826} {0.818} {0.801} {0.720} {0.000} {0.000} {0.002} {0.061} {0.072}

ξ = 10.0 9.839 9.816 9.813 6.619 – – – – –
(0.841) (0.782) (0.868) (0.822)
[0.672] [0.633] [0.629] [0.519]
{0.799} {0.834} {0.776} {0.008}

ψ = 0.25 0.240 0.238 0.233 0.158 – – – – –
(0.066) (0.067) (0.074) (0.092)
[0.124] [0.105] [0.100] [0.063]
{0.950} {0.951} {0.927} {0.586}

Notes: This table summarizes the results of the “baseline” Monte Carlo experiment. For each estimator-parameter
combination, this table reports: (i) the median estimate, (ii) the standard deviation of the estimates (in parentheses),
(iii) the average standard error (in square brackets), and (iv) the proportion of non-rejected “true” null hypotheses for
that parameter (in curly brackets), across 1,000 repetitions with pseudo-sample size N = 500. The data generation
process and estimators are based on the (H,C,C∗

e) matrices as summarized in the table’s header. The estimators
are as follows; GMM1: Q = 3, P = 2, Ce = C; GMM2: Q = 4, P = 3, Ce = C; GMM3: Q = 5, P = 4, Ce = C;
GMM4: Q = 5, P = 4, Ce = C∗

e ; OLS is self-explanatory; 2SLSa: z = x; 2SLSb: z = Gw; 2SLSc: z = Bx; 3SLS:
z = Gw with ensuing Cochrane-Orcutt transformation and re-estimation. See the text for further details. All other
experiments are summarized in tables, also reported in Addendum D, that follow the same structure as this one.

We summarize the results of our baseline simulations in Table 1. For each combi-
nation of estimator and parameter, we report the median and the standard deviation
of point estimates for the estimated parameters of interest across 1,000 repetitions.
In addition, we report the average standard errors and the proportion of non-rejected
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“true” null hypotheses for that particular parameter. All GMM estimators based on a
correctly specified matrix C (that is, “GMM1,” “GMM2” and “GMM3”) display a good
performance, as expected, at estimating the true parameters of the d.g.p. (which are
reported in the table). The number of moments does not appear too consequential. It
is interesting to examine the estimates based on a misspecified matrix Ce (“GMM4”):
this introduces a bias, but not a particularly pronounced one for the key parameters
of interests β and γ (unlike the endogeneity parameter ξ, for which the bias is more
pronounced). More conventional estimators typically deliver biased estimates for β,
γ, or for both that are comparable to those from misspecified GMM. The 2SLS and
3SLS estimators based on the exogenous regressor w perform somewhat better, but
still not perfectly, which we interpret as an instance of weak identification.31 For the
third 2SLS estimator (where z = Bx), the bias appears coupled with an exceedingly
large variability of the estimates: as hinted in Section 3.2, the transformation implied
by B is bound to remove much of the independent variable’s variation, which in turn
is likely to exacerbate the bias of the GMM estimator in small samples.

We also performed other experiments. We are especially interested in cases where
the characteristic matrices are based on segregated groups, as in one of our examples:
the reason is that, as discussed in section 3.1, identification is attainable via a simpler
approach. Table 2 summarizes the outcome of two experiment variations where C is
not generated via small-world draws separate from G’s, but has a pre-defined block-
diagonal structure. The results are qualitatively unchanged from the baseline of Table
1; it is especially worth noting that not even in this case do the “2SLSc” estimates,
which set z = Bx, appear to outperform our GMM approach with misspecified Ce.
Other results, not reported here for brevity, are also analogous.32 To summarize, the
GMM estimator that we propose appears to perform well, and despite its demanding
requirements (knowledge of the true characteristic matrix C), departures from the
ideal scenario, like the instances of misspecification we examined, do not appear worse
than using more conventional estimators. Furthermore, transformations of the data
that purge the endogenous component of x do not seem to be a viable alternative. All
these considerations, combined, make a case in favor of using our proposed estimator
in the applied econometric practice.

31In general β seldom displays much of a bias; this is likely due to the inclusion of w in our d.g.p.
and moments. In unreported experiments where w is omitted, the bias of β is typically larger.

32Some of these results, which are informed by perturbations of the parameter values in the d.g.p.,
the small-world algorithm, or by other H, C and C∗

e matrices, are reviewed in Addendum D.
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Table 2: Monte Carlo Simulations: group-based characteristic matrices

Target
Parameter

Experiment 2: H = I+G; C: groups of size 10; C∗
e : C’s groups, evenly split

GMM1 GMM2 GMM3 GMM4 OLS 2SLSa 2SLSb 2SLSc 3SLS

α = 0.25 0.250 0.251 0.250 0.228 0.229 0.214 0.251 0.221 0.341
(0.024) (0.025) (0.026) (0.028) (0.010) (0.025) (0.045) (0.029) (2.932)
[0.030] [0.023] [0.024] [0.030] [0.010] [0.026] [0.085] [0.030] [4.557]
{0.881} {0.845} {0.837} {0.808} {0.000} {0.000} {0.065} {0.001} {0.299}

β = 0.40 0.400 0.400 0.400 0.418 0.418 0.432 0.399 0.425 0.355
(0.020) (0.020) (0.021) (0.023) (0.008) (0.022) (0.028) (0.026) (1.450)
[0.025] [0.019] [0.020] [0.026] [0.008] [0.022] [0.055] [0.026] [1.968]
{0.884} {0.855} {0.846} {0.824} {0.000} {0.000} {0.026} {0.000} {0.185}

γ = 0.50 0.503 0.503 0.504 0.495 0.541 0.533 0.543 0.488 –0.799
(0.022) (0.022) (0.021) (0.027) (0.010) (0.016) (0.424) (0.020) (39.491)
[0.020] [0.015] [0.015] [0.038] [0.010] [0.016] [0.951] [0.019] [96.26]
{0.838} {0.784} {0.797} {0.914} {0.000} {0.000} {0.465} {0.000} {0.711}

χ = 1.00 1.000 1.000 1.000 0.998 0.996 0.993 1.000 0.994 1.016
(0.008) (0.008) (0.008) (0.008) (0.008) (0.009) (0.014) (0.010) (0.443)
[0.005] [0.005] [0.005] [0.006] [0.008] [0.009] [0.025] [0.010] [1.552]
{0.751} {0.731} {0.732} {0.753} {0.000} {0.000} {0.004} {0.000} {0.079}

ξ = 10.0 9.063 9.047 8.947 18.141 – – – – –
(3.504) (3.379) (3.334) (9.412)
[4.510] [2.912] [3.087] [15.48]
{0.921} {0.885} {0.890} {0.782}

ψ = 0.25 0.248 0.249 0.248 0.223 – – – – –
(0.047) (0.047) (0.049) (0.051)
[0.060] [0.047] [0.048] [0.074]
{0.914} {0.888} {0.882} {0.927}

Target
Parameter

Experiment 3: H = C: groups of size 10; C∗
e : C’s (H’s) groups, evenly split

GMM1 GMM2 GMM3 GMM4 OLS 2SLSa 2SLSb 2SLSc 3SLS

α = 0.25 0.249 0.249 0.249 0.224 0.231 0.216 0.251 0.212 0.248
(0.026) (0.027) (0.026) (0.030) (0.010) (0.030) (0.028) (0.033) (0.088)
[0.029] [0.026] [0.026] [0.029] [0.010] [0.030] [0.057] [0.032] [0.490]
{0.878} {0.860} {0.878} {0.773} {0.000} {0.003} {0.061} {0.003} {0.355}

β = 0.40 0.401 0.401 0.401 0.422 0.416 0.430 0.399 0.434 0.402
(0.021) (0.022) (0.021) (0.025) (0.008) (0.026) (0.019) (0.029) (0.058)
[0.024] [0.022] [0.022] [0.025] [0.008] [0.026] [0.043] [0.028] [0.314]
{0.886} {0.866} {0.880} {0.787} {0.000} {0.000} {0.018} {0.000} {0.213}

γ = 0.50 0.503 0.504 0.505 0.491 0.568 0.559 0.582 0.557 0.680
(0.029) (0.030) (0.029) (0.032) (0.008) (0.018) (0.484) (0.024) (1.659)
[0.024] [0.021] [0.021] [0.035] [0.012] [0.020] [1.197] [0.027] [10.73]
{0.818} {0.799} {0.805} {0.895} {0.000} {0.000} {0.521} {0.000} {0.787}

χ = 1.00 1.000 1.000 1.000 0.998 0.996 0.993 0.999 0.993 1.000
(0.008) (0.008) (0.008) (0.008) (0.007) (0.009) (0.014) (0.010) (0.034)
[0.005] [0.005] [0.005] [0.006] [0.008] [0.010] [0.033] [0.010] [0.242]
{0.754} {0.742} {0.741} {0.774} {0.000} {0.000} {0.003} {0.000} {0.085}

ξ = 10.0 9.116 9.071 8.914 18.894 – – – – –
(2.717) (2.866) (2.855) (6.145)
[2.830] [2.288] [2.333] [7.580]
{0.870} {0.850} {0.850} {0.619}

ψ = 0.25 0.246 0.247 0.244 0.223 – – – – –
(0.048) (0.048) (0.050) (0.051)
[0.057] [0.050] [0.050] [0.063]
{0.903} {0.904} {0.898} {0.908}

See the notes accompanying Table 1 for a description of this table’s structure.
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6 Empirical Application

6.1 Motivation

To illustrate how our proposed method can help account for correlated effects in an
actual empirical study about social effects, we leverage both the setting and data from
the influential paper by De Giorgi et al. (2010). The original aim of their study is the
search for peer effects in major choice in higher education settings. While we revisit
this research question, we also address a more conventional one, which is about peer
effects on academic performance, as measured in terms of final grades or GPA. The
setting studied by De Giorgi et al. (2010) is, in fact, suitable to tackle both questions.
More specifically, De Giorgi et al. (2010) examine data about students who started
their undergraduate studies at Bocconi University, a relevant Italian business school
which also offers university degrees in Economics and other social sciences, in 1998.
Because Bocconi University attracts highly skilled students from Italy and elsewhere,
uncovering peer effects on academic performance would reveal a “social multiplier”
that further enhances the value of degrees like Bocconi’s.

An attractive feature of the setting originally examined by De Giorgi et al. (2010)
is that peer groups are shaped according to a non-overlapping, networked structure
of social interactions G that is determined exogenously. Specifically, students from
different undergraduate programs at Bocconi University take common foundational
courses over their first year and a half of studies; to reduce class size, the university
organizes multiple, parallel versions of each common course; freshmen are randomly
allocated into them. In the original paper, the authors defined two students as “peers”
if they had been classmates in a given number of common courses out of seven, with
the motivation that the bonds established by students over their first three semesters
of undergraduate studies would affect their later choices about majors.33 We refer to
the original paper for a full-fledged description of the setting and data.

6.2 Specification

We estimate an augmented version of model (1) on the data provided by De Giorgi
et al. (2010), using the same (row-normalized) adjacency matrix G from their favorite

33There were in total nine common courses, of which two were in legal subjects and were excluded
by De Giorgi et al. (2010). The two law classes had low attendance rates and thus, a lower number of
parallel sessions; consequently, including them would inappropriately inflate a student’s peer count.
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specification of the network structure, where two students are defined as “peers” if
they attended together at least four common courses. However, our revisited analysis
differs from the original in two main respects. First, we examine two, rather than one
outcomes of interest. In the original paper, the dependent variable is a dummy that
denotes major choice (Economics vs. Business Administration): hence, it contradicts
the assumptions about the error term maintained in our model. Here, we largely focus
on a different, yet per se interesting outcome variable that we write as y(1)i , measured
on a more continuous scale: the later Bocconi GPA34 that excludes the initial common
courses. For the sake of comparison, we also report results that use the original binary
outcome, that we write as y(2)i . Second, we leverage a specific right-hand side variable
xi to construct identifying moment conditions for different estimators: i.e. the grade
received by students in high school final exams.35 This variable has strong predictive
power towards both outcomes yi, but we suspect it to be endogenous. Third, in most
specifications we omit contextual or “exogenous” effects, as we find that they typically
lead to noisier estimates that complicate comparisons across methods.

Our econometric specification is summarized as follows, for o = 1, 2:

y
(o)
i = β

N∑
j=1

gijy
(o)
i + γxi + δ

N∑
j=1

gijxj +
K′∑
k=1

χkwki + εi, (20)

though in most cases we impose the restriction δ = 0. TheK ′ right-hand side variables
wki in (20) are additional controls that largely overlap with those in the original study:
dummies about gender, residence status in Milan, a student’s region of origin, type of
high school degree (technical school versus an academic-oriented liceo) and a student’s
household income being classified in the top bracket. Among all these controls, we pay
special attention to the female dummy; we denote the associated parameter by χfe.
The original study included some additional variables: more specifically, the logarithm
of household income and the Bocconi admission test score. We treated the latter both
as candidates for our xi predictor; just like our chosen xi (the high-school grade) they

34In Italian universities like Bocconi, grades are awarded over a scale of 30 points, with 18 being
the passing grade. A GPA in Italy is a weighted average of all exam grades, with weights measuring
the relative hours load of each course.

35In Italy, completion of high school is conditional upon passing a centrally-managed nationwide
exam (which differs by type of high school, e.g. technical schools or academic-oriented licei) grades
in this exam are awarded over a scale of 100 points, with 60 being the passing grade. In the data xi

is rescaled on a zero-to-one measure.
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are likely to be endogenous. While experimenting with our proposed GMM approach,
however, we found that both candidates typically lead to noisier estimates across all
estimators. Since we focused on approaches to address the endogeneity of our favorite
predictor xi, we chose for the sake of consistency to omit other potentially endogenous
regressors from the right-hand side of (20) across all specifications we discuss next.36

We provide some key summary statistics in Table 3; we refer to the original study for
more extensive data description and additional statistics.

Table 3: Main variables of interest: summary statistics

y(1) Gy(1) y(2) Gy(2) x Gx wfe

Mean 26.752 26.755 0.127 0.129 0.863 0.864 0.396
(St. dev.) (2.049) (0.522) (0.333) (0.088) (0.112) (0.027) (0.489)

Notes. This table reports the mean and the standard deviation of key variables,
denoted in the column headers by their corresponding compact notation (e.g., x
is the vector of xi observations; wfe is the vector of female dummies). Across all
calculations the sample size equals N = 1, 141. St. dev.: standard deviation.

While we believe that our chosen xi variable is representative of a student’s prior
educational achievements or background, as hinted we suspect it to be endogenous.
In fact, it is likely to depend upon the unobserved individual ability or motivation, as
encoded in the error term εi, that also affect the outcomes yi. This would not affect the
identification of social effects if such unobserved components were independent across
students. However, there are reasons to suspect the existence of a spatial correlation
between the error terms of different students which occurs along geographical lines.
Note that Bocconi is a prestigious university within Italy, certainly not a cheap one to
attend by national standards;37 while located in Milan in Lombardy, about half of its
student body hails from outside that region. For such students the cost of attending
Bocconi is higher in comparative terms; thus, they are likely to be representative of
a relatively more (self-)selected subset of the population of potential students. This
may be especially salient for those students coming from those central and southern

36The original study also included a significant predictor of major choice: a dummy variable that
indicates whether a student declared Economics (instead of Business) as their favorite major before
taking the final decision at the end of the initial common courses. This is an obvious instrument for
the identification of social effects in our secondary outcome of interest: major choice, and we have no
reason to suspect it endogenous. As the objective of our analysis is to showcase our proposed method
in a real setting where endogeneity is salient, we chose to omit this variable from the analysis.

37We would like to remark that neither of us has ever graduated from or been employed at Bocconi
University. One of us briefly attended one of its undergraduate programs before dropping out.
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regions of Italy (about one fourth of our sample) with a markedly lower income per
capita and higher overall costs for attending Bocconi.

In light of these observations, we model endogeneity as follows:

xi = x̃i + ξεi (21)

εi =
N∑
i=1

c̃ijυi, (22)

where: c̃ii ∈ (0, 1] for i = 1, . . . , N ; c̃ij = c̃ji ∈ [0, 1) for any (i, j) pair with i ̸= j; and
υi, for i = 1, . . . , N , is a random shock with finite but otherwise unrestricted variance.
This specification departs slightly from our workhorse model described in (1)-(2)-(3)
because it imposes the restriction that ψ = 0. In fact, it corresponds with a variation
of our model where C = I and the structure of spatial correlation for both xi and εi is
completely characterized by the c̃ij weights. We took this approach for two reasons:
on the one hand, we observed that in this particular setting, estimates of ψ based on
our model with C = I turn out to be somewhat noisy; on the other hand, we aimed to
experiment with structures of spatial correlation that are non-linear in geographical
distance. We note that this approach additionally showcases our model’s flexibility.
Estimation of this modified (or restricted) model proceeds straightforwardly.

We experiment with two types of spatial correlation structures that are motivated
upon our concerns about geography-induced self-selection. They are characterized by
different choices for the C̃ “characteristic matrices” that collect the c̃ij weights, and
such that the variance-covariance matrix of both xi and εi is proportional to C̃C̃T.

1. The first type returns a structure of spatial correlation featuring distance decay :

Cov (xi, xj) ∝ exp (−D · dij) .

for every pair (i, j), where dij is the distance between the geographical centroids
of two students’ provinces of origin.38 For the sake of this paper’s application,
we illustrate results based on the (simplifying) choice D = 1. We thus construct
a characteristic matrix consistent with the resulting pattern, and denoted by
C̃d, by eigendecomposing the target variance-covariance matrix C̃dC̃

T
d .

38Provinces are traditional administrative units of Italy. In 1998 there were 101 provinces, grouped
in 20 larger regions. We set dij = 0 if i = j or the two students hail from the same province.
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2. The second type features geographically-informed “segregated groups” as in one
of the examples from Section 2.3. In particular, we specify two partitions of the
Italian territory between non-overlapping areas, and for every pair (i, j), we set

c̃o,ij = |Ho (i)|−1
1 [j ∈ Ho (i)]

where for o = 1, 2, Ho (i) denotes the geographical area that student i belongs to
according to one of the two partitions.39 This yields two characteristic matrices
denoted as C̃h1 and C̃h2, respectively. The first partition is based on the polities
that historically existed on the Italian territory before the process of political
unification of the Italian peninsula was started in 1859.40 The second partition
instead classifies Italian provinces according to the regional language which is
traditionally most widely spoken in the local area.41 Both definitions correspond
to different groupings of Italian provinces, which often transcend the borders of
modern regions, that capture similarities in history, subculture and economic
structure of different areas.42 In both cases, we set c̃o,ii = 1 for i = 1, . . . , N .

Some considerations are common across all characteristics matrix that we employ.
First, they comply with identification condition (ii) spelled out by Theorem 1. Second,
they also comply with Assumption 2, as required for Theorem 2. Third, their entries
are fairly comparable in magnitude. Table 4 qualifies these statements quantitatively:
it reports, for our three characteristic matrices, the means and the standard deviations
of the elements of the diagonal of C̃G, as well as of the entries of either triangle of
C̃C̃T. The former, in particular, verifies that condition (ii) of Theorem 1 holds in our
setting. While none of the characteristic matrices that we use is likely to capture the
true spatial correlation, we expect them all to approximate it to some degree.

39In this case, both covariances Cov (εi, εj) and Cov (xi, xj) are decreasing in |Ho (i)|, as we expect
larger groups or areas to be more heterogeneous.

40There are a few differences between the H1 (i) groups we use to construct C̃h1 and the 1859 po-
litical map of Italy. First, we detach both Sardinia and Sicily from their parent kingdoms (“Sardinia-
Piedmont” and “Two Sicilies”). Second, we split Lombardy-Venetia into its constituent parts. Third,
we treat the two small historical duchies of Parma-Piacenza and Modena-Reggio as one polity.

41Italian traditional regional languages, such as Lombard, Friulian, Neapolitan or Sardinian, are
still widely spoken nowadays. Although most of them belong to the Romance linguistic family, they
often lack mutual intelligibility, hence their colloquial denomination as “dialects” may be erroneous.

42It is important to comment on how we treat the non-Italian students (that amount to less than
2 per cent of the dataset). In constructing C̃d they are treated as hailing from an additional, very
distant “province.” In the matrices of the C̃ho kind instead, they are identified as a separate group.
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Table 4: Characteristic matrices: summary statistics

Diagonal of C̃G Upper/lower triangle of C̃C̃T

C̃d C̃h1 C̃h2 C̃d C̃h1 C̃h2

Mean 0.0001 0.0009 0.0009 0.0006 0.0026 0.0026
(St. dev.) (0.0078) (0.0006) (0.0008) (0.0002) (0.0066) (0.0072)

Obs. N = 1, 141 N (N − 1) /2 = 650, 370

Notes. This table reports, for the three definitions of C̃ used in the analysis that
are indicated in each column header, the mean and the standard deviation of the
N elements of the diagonal of C̃G (left panel), or of the N (N − 1) /2 elements of
either the lower or the upper triangle, diagonal excluded, of C̃C̃T (right panel).
St. dev.: standard deviation; Obs.: observations.

6.3 Estimates

We thus turn our attention to the empirical results. We begin by reviewing estimates
based on conventional IV/2SLS estimators, that are collected in Table 5. Columns
(1) through (4) of this table display estimates for our main outcome of interest y(1)i :
students’ final GPA on graduation. In this case, typical estimates for the social effects
β range between 0.13 and 0.57. However, these estimates are statistically significant
only in models from columns (1) and (3), obtained via typical instruments based on
spatial lags of x, and by dropping the exogenous effect δ. In both cases, the effect is
estimated at about β ≃ 0.35. By contrast, the two estimates of β in columns (2) and
(4) are not statistically significant. The former features the exogenous effect δ, which
appears to introduce noise. The latter employs (arguably weak) instruments based
on the female dummy wfe. Note that the estimates of γ and χfe are similar across all
models. In light of these results, we argue that the most promising route to estimate
social effects is through instruments based on the high-school final grades x, provided
that any endogeneity issues about this variable are properly addressed. In addition,
these preliminary results prompt us to drop δ from our GMM estimates. Note that
most parameter estimates about models for the original outcome of interst y(2)i in De
Giorgi et al. (2010): students’ major choice, are seldom statistically significant. It is
important to remark that our specification differs from the original; we estimate it for
comparison’s sake. Once again, the specifications with instruments based on spatial
lags of x and without δ, that is (5) and (7), appear more statistically precise (they
return statistically significant estimates for γ) while those from columns (6) and (8)
feature no statistically significant estimate at all.
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Table 5: Empirical estimates: 2SLS

Outcome variable: y
(1)
i (later career GPA) Outcome variable: y

(2)
i (economics major)

(1) (2) (3) (4) (5) (6) (7) (8)

β 0.319** 0.571 0.353** 0.131 0.359 –3.586 0.115 0.634
(0.136) (0.878) (0.139) (0.360) (0.448) (26.90) (0.410) (0.496)

γ 11.39*** 11.33*** 11.37*** 10.76** 0.589*** 0.648 0.643*** 0.114
(0.525) (0.551) (0.522) (4.151) (0.096) (0.401) (0.095) (0.861)

δ – –2.660 – – – 2.595 – –
(11.55) (18.78)

χfe 0.234** 0.227** 0.273*** 0.262 -0.018 0.003 -0.023 0.005
(0.101) (0.101) (0.101) (0.235) (0.020) (0.140) (0.020) (0.049)

z1 x x x Gwfe x x x Gwfe

z2 Gx Gx Gx G2wfe Gx Gx Gx G2wfe

z3 – G2x – – – G2x – –
PFE NO NO YES NO NO NO YES NO
Obs. 1,141 1,141 1,132 1,141 1,141 1,141 1,132 1,141

Notes. This table reports IV/2SLS estimates of model (20) for either outcome variables of interest,
as indicated in the header. Most estimates incorporate the restriction δ = 0 (no exogenous effects)
unless they report an estimate for δ. All estimates are based upon orthogonality conditions between
the error term and: (i) a constant vector; (ii) the wki controls; (iii) two or three “instruments” (IVs)
z1, z2 or z3 as specified in each column; z3 only appears in models featuring the exogenous effect.
The vector wfe stacks the “female” dummies. “PFE” denotes “Province Fixed Effects,” handled via
a preliminary within-transformation. Estimates for parameters other than β, γ, δ, χfe are omitted.
Heteroschedasticity-consistent standard errors are in parentheses. Asterisk series: *, **, and ***;
denote statistical significance at the 10, 5 and 1 per cent level, respectively. Obs.: Observations.

Next, we discuss estimates obtained via our proposed GMM approach: they are
collected in Table 6. All specifications in this table incorporate the restriction δ = 0:
as in estimates based on conventional models, we noted that any attempt to estimate
exogenous effects results in overall noisier estimates.43 We focus on outcome y(1)i first.
Column (1) reports results for the baseline specification of the later career GPA that
models spatial endogeneity using a characteristic matrix C̃d based on geographical
spatial decay. The estimate of social effects β is notably smaller than those reported
in Table 5 and it is not statistically significant; analogous considerations extend to the
estimates of γ and χfe. The “endogeneity” parameter is estimated ξ̂ ≃ 0.024 but is
not statistically significant either. Columns (2) and (3) report estimates informed by
the characteristic matrices C̃h1 and C̃h2 that are based, respectively, on the historical

43In addition, none of these estimates features “province fixed effects.” Adding them considerably
complicates GMM (numerical) estimation; at the same time, the estimates of Table 5 suggest that
they are unlikely to substantially affect the results.
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Table 6: Empirical estimates: proposed GMM approach

Outcome variable: y
(1)
i (later career GPA) Outcome variable: y

(2)
i (economics major)

(1) (2) (3) (4) (5) (6) (7) (8)

β 0.096 0.000 0.000 0.076* 0.058 0.058 0.058 0.057
(0.102) (0.044) (0.044) (0.044) (0.042) (0.041) (0.041) (0.041)

γ 3.719 11.21*** 11.21*** 5.544*** 0.587 0.587*** 0.588*** 0.258
(8.175) (0.308) (0.315) (1.667) (1.066) (0.053) (0.054) (0.296)

χfe 0.618 0.237*** 0.237*** 0.527*** –0.016 –0.016 –0.016 0.000
(0.428) (0.051) (0.051) (0.111) (0.062) (0.010) (0.010) (0.027)

ξ 0.024 0.282 0.319 0.020*** 0.000 0.835 0.869 0.031
(0.016) (0.293) (0.302) (0.004) (0.098) (0.966) (1.006) (0.021)

C̃ C̃d C̃h1 C̃h2 I+G C̃d C̃h1 C̃h2 I+G

Obs. 1,141 1,141 1,141 1,141 1,141 1,141 1,141 1,141

Notes. Each column in this table reports estimates of the model described in (20)-(21)-(22), using
the GMM estimator illustrated in Section 4, for both outcome variables as indicated in the header.
All estimates incorporate the restriction δ = 0. Each column reports estimates based on a different
choice for the characteristic matrix C̃ (which collects the c̃ij weights), as indicated. Point estimates
for parameters other than β, γ, χfe and ξ are omitted. Standard errors are calculated as described
in Addendum C; they are reported in parentheses. Asterisk series: *, **, and ***; denote statistical
significance at the 10, 5 and 1 per cent level, respectively. Obs.: Observations.

polity of linguistic group to which a student’s home province belongs. In these cases,
the estimates of γ and χfe are statistically significant and are in line with those from
Table 5. However, β is estimated as a virtual zero and ξ is not statistically significant
either. Furthermore, we experiment with a characteristic matrix defined as a function
of the peer network: C̃ = I+G: the results are reported in column (4). The resulting
estimates for β, γ and χfe are attenuated relative to those from conventional models,
but are statistically significant (for β, only at the 10 per cent level). The endogeneity
parameter is instead estimated ξ̂ ≃ 0.02 and it is significant at the 1 per cent level. In
columns (5) through (8) we report model estimates about outcome y(2)i , one for each
of the four characteristic matrices used for y(1)i . In general, none of the key parameter
estimates are stastically significant, the exception being γ when using characteristic
matrices Ch1 and Ch2: these estimates align with those from Table 5.

We offer the following interpretation of the results for our key outcome of interest:
students’ final GPA y

(1)
i . Overall, none of the C̃ matrices we construct to model our

concern about self-selection of undergraduate Bocconi students along geographical or
cultural lines appear to work perfectly: none of them is associated with a statistically
significant estimate of ξ. We suspect, however, that the one based on the exponential
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decay specification: C̃d, is a better approximation.44 We find it interesting, moreover,
that the specification with C̃ = I+G leads to a statistically significant estimate for ξ.
Because peer networks in college cannot predict high-school grades, this is evidently a
random occurrence. All characteristic matrices we experimented with are most likely
misspecified; yet, as shown via our Monte Carlo simulations, the resulting bias needs
not be larger than that of conventional methods. The estimates of β, in particular,
appear less economically and stastistically significant than those from Table 5. Similar
considerations extend to the binary outcome y(2)i : students’ choice of major. We note
that, although applied to a regression model that displays low predictive power in the
first place, and unlike conventional methods, our approach delivers point estimates
of social effects in a neighborhood of β̂ ≃ 0.06, a figure very close to the main results
by De Giorgi et al. (2010).45

We draw some more general implications from these results. First, our approach
can yield statistically insignificant estimates of social or peer effects when conventional
approaches register these as significant. Second, the choice of the characteristic matrix
matters. We suggest that when testing whether results about social effects hold under
our method, researchers experiment with multiple plausible characteristic matrices
(say, as part of robustness checks). Third, observe that no characteristic matrix that
we experimented with admits a straightforward transformation of the kind BC = 0,
as per the discussion from Section 3.1. Thus, any attempt to differentiate endogeneity
out (to later proceed with more conventional methods) must rely on B transformation
matrices based off the Moore-Penrose pseudoinverse of C. In practice, this is likely to
result in unrealistic point estimates and large standard errors,46 making this approach
unviable and calling for a full-fledged implementation of the method we propose.

7 Conclusion

This paper shows that one can identify and estimate spillover or social effects within
a standard spatial econometric framework, even if the right-hand side characteristics

44In a previous version of this paper we reported estimates based on a more restricted version of
the model, which enforced homoschedasticity. There, estimates based on the C̃d matrix delivered
statistically significant estimates for ξ.

45In this case, enforcing homoschedasticity would yield statistically significant estimates of β and,
for some specifications of SLE, of ξ too.

46This issue is showcased in Addendum E, which reports estimates based on this alternative “data
transformation” approach for this empirical application.
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are endogenous, and without resorting to external instruments. The requirements for
identification are fairly general: it suffices that the structure of social interactions is
exogenous, not fully-overlapping in only a slightly stronger sense relative to standard
identification conditions (e.g. Bramoullé et al., 2009), and that the spatial structure of
endogeneity (the dependence of individual covariates on other agents’ unobservables)
is known by the econometrician up to a multiplicative constant. This approach can be
applied to studies about spillover effects where the the right-hand side covariates are
suspected endogenous and affected by correlated effects. In our empirical application
that revisits the study by De Giorgi et al. (2010), we show that under different speci-
fications of the spatial structure of endogeneity, our approach can lead to precise zero
estimates of the social effects, while conventional methods would estimate positive
and statistically significant effects.

We envision three areas for future work. First, we plan to extend our approach to
more general specifications of the stochastic process driving endogeneity, such as non-
linear ones. To this end, we envision the use of semi-parametric estimators or control
function approaches that are less reliant upon linear functional forms. Second, we plan
to relax the assumption about exogeneity of the structure G, by incorporating either
control function methods à la Arduini et al. (2015) or Johnsson and Moon (2021),
or a GMM approach for panel data in the spirit of Kuersteiner and Prucha (2020).
Third, and last, we believe it would be worthwhile to integrate our framework with
recent contributions that exploit penalized estimators to recover an unknown network
structure (Rose, 2017b; de Paula et al., 2023). We conjecture that approaches of this
sort can also serve another aim: to recover (partially) unknown characteristic matrices
C, and thus mitigate the main requirement of our method (knowledge of C), so long
as the structure of social interactions G is at least partially known.
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Appendix – Mathematical Proofs

Proof of Theorem 1

This proof’s strategy follows Lee and Liu (2010): it evaluates the moment conditions
at an “impostor” parameter vector θ̃ ∈ Θ, showing that, for Q ≥ 4:

E
[
m
(
θ̃
)]

= 0

if and only if θ̃ = θ0, where θ0 = (ϑ0,ξ0,ψ0) denotes the “true” parameter vector. It
is convenient to develop the analysis separately for the linear and quadratic moment.
Define some ancillary objects: i. Λ (θ), a 1 +QK ×K matrix (for any θ ∈ Θ):

Λ (θ) ≡



0 0 . . . 0
Tr (Υ (θ)C1) 0 . . . 0

0 Tr (Υ (θ)C2) . . . 0
...

... . . . ...
0 0 . . . Tr (Υ (θ)CK)

Tr (Υ (θ)GC1) 0 . . . 0
0 Tr (Υ (θ)GC2) . . . 0
...

... . . . ...
0 0 . . . Tr (Υ (θ)GCK)
...

... . . . ...
Tr
(
Υ (θ)GQ−1C1

)
0 . . . 0

0 Tr
(
Υ (θ)GQ−1C2

)
. . . 0

...
... . . . ...

0 0 . . . Tr
(
Υ (θ)GQ−1CK

)



;

ii. F0 ≡ I+ψ0E and F̃ ≡ I+ ψ̃E; iii. Ξ0, an N ×N matrix defined as follows:

Ξ0 =
[
ξ01C1F0υ . . . ξ0KCKF0υ

]
;

iv. Kx̃ and Kυ, two matrices of dimension N × 1 +QK:

Kx̃ ≡
[
ι X̃ GX̃ . . . Gq−1X̃

]
,

Kυ ≡
[
0 Ξ0 GΞ0 . . . Gq−1Ξ0

]
;

v. Sβ, an N ×N matrix defined as follows:

Sβ ≡ G (I− β0G)−1

[
I+

K∑
k=1

ξ0k (γ0kI+ δ0kG)Ck

]
,
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vi. lastly, Sx̃ and Sυ, two matrices of dimension N × 2 (1 +K):

Sx̃ ≡
[
ι G (I− β0G)−1

(
α0ι+ X̃γ0 +GX̃δ0

)
X̃ GX̃

]
,

Sυ ≡
[
0 SβF0υ Ξ0 GΞ0

]
.

We begin by evaluating the expectation of the linear moments at θ̃:

E
[
m1

(
θ̃
)]

= E
[
(Kx̃ +Kυ)

T (Sx̃ + Sυ)
] (

ϑ0 − ϑ̃
)
+

+ E
[
(Kx̃ +Kυ)

T F0υ
]
−Λ

(
θ̃
)
ξ̃

= E
[
KT

x̃Sx̃ +KT
υSυ

] (
ϑ0 − ϑ̃

)
+Λ (θ0)ξ0 −Λ

(
θ̃
)
ξ̃

= E
[
KT

x̃Sx̃ +KT
υSυ

] (
ϑ0 − ϑ̃

)
+Λ

(
θ̃
)(

ξ0 − ξ̃
)
−

−
(
Λ
(
θ̃
)
−Λ (θ0)

)
ξ0. (A.1)

This follows since:
Kx̃ +Kυ =

[
ι Q1 . . . QQ

]
and:

ε
(
θ̃
)
= y − (Sx̃ + Sυ) ϑ̃ = (Sx̃ + Sυ)

(
ϑ0 − ϑ̃

)
+ F0υ,

E
[
KT

x̃F0υ
]
= E

[
KT

x̃Sυ

]
= E

[
KT

υSx̃

]
= 0, and E

[
KT

υF0υ
]
= Λ (θ0)ξ0. To dissect

the last two terms in the last line of (A.1), note that, for some N ×N matrix M:

Tr
(
Υ
(
θ̃
)
M
)
= Tr

(
MF̃Σ̃F̃T

)
where, denoting the Hadamard (elementwise) matrix product by ‘◦’:

Σ̃ ≡ E
[
diag

(
υ21

(
θ̃
)
, . . . , υ2N

(
θ̃
))]

= I ◦ E
[
υ
(
θ̃
)
υT
(
θ̃
)]

;

while:

F̃Σ̃F̃T =
[
F0 − E

(
ψ0 − ψ̃

)]
Σ̃
[
F0 − E

(
ψ0 − ψ̃

)]T
= F0Σ̃FT

0 −
[
EΣ̃FT

0 + F0Σ̃ET
] (
ψ0 − ψ̃

)
+
[
EΣ̃ET

] (
ψ0 − ψ̃

)2
.

Also note that, by Assumption 5, the following derivation yields a convergent matrix
series:

F̃−1F0 =
(
F−1

0 F̃
)−1

=
[
I− F−1

0 E
(
ψ0 − ψ̃

)]−1

=
∞∑
r=0

F−r
0 Er

(
ψ0 − ψ̃

)r
. (A.2)
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The previous observations are instrumental to further analysis of Σ̃:

Σ̃ = I ◦ E
[
F̃−1ε

(
θ̃
)
εT
(
θ̃
)(

F̃−1
)T]

= I ◦ E
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[
(Sx̃ + Sυ)

(
ϑ0 − ϑ̃

)
+ F0υ

] [
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(
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)
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]T(
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)T]
= I ◦
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(
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)(
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ST
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−1
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0 Sυ

(
ϑ0 − ϑ̃

)(
ϑ0 − ϑ̃

)T
ST
υ

(
F̃−1F0F

−1
0

)T]
+ I ◦ E

[
F̃−1F0F

−1
0 Sυ

(
ϑ0 − ϑ̃

)
υT
(
F̃−1F0

)T]
+ I ◦ E

[
F̃−1F0υ

(
ϑ0 − ϑ̃

)T
ST
υ

(
F̃−1F0F

−1
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By replacing (A.2) in the above, isolating all expectations E
[
υυT

]
= Σ, and with

additional substitutions and manipulations, one can develop (A.1) into:

E
[
m1

(
θ̃
)]

= [Π0 +Π1]
(
ϑ0 − ϑ̃

)
+
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∞∑
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K∑
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·

·Ψu,krsvec
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ϑ0 − ϑ̃

)(
ϑ0 − ϑ̃

)T)
, (A.3)

where Π0 ≡ E
[
KT

x̃Sx̃

]
and Π1 ≡ E

[
KT

υSυ

]
are matrices of size 1+QK × 2 (1 +K),

the φ vectors have dimension 1+QK, the Φ matrices have size 1+QK × 2 (1 +K),
while the Ψ matrices have size 1+QK×4 (1 +K)2. The structure of Π0 in particular
is standard in the analysis of GMM estimators for models with spatially autoregressive
terms (e.g. Lee, 2007a; Lee and Liu, 2010; Lin and Lee, 2010), with the difference that
here, Π0 only features the independent components of X. Instead:

Π1 =
[
0 π0 π1 . . . πK πK+1 . . . π2K

]
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where all the constituent vectors have a zero first entry (hence the first row of Π1 is
also zero): for k = 1, . . . , K, π0,0 = π0,k = πK+k,0 = 0. The other entries of π0 are:

π0,1+(q−1)K+k = ξ0k
[
vec
(
CT

kG
q−1Sβ

)]T
vec
(
F0ΣFT

0

)
for q = 1, . . . , Q and k = 1, . . . , K; as for the other non-zero vectors of Π1:

πoK+h,1+(q−1)K+k = ξ0kξ0h
[
vec
(
CT

kG
q−1+oCh

)]T
vec
(
F0ΣFT

0

)
for o = 0, 1, h = 1, . . . , K, q = 1, . . . , Q and k = 1, . . . , K. The φ vectors as well as
all matrices of the Φ and Ψ kind are instead derived from the analysis of Λ (θ); they
are examined next.

To proceed, define the following row vectors of dimension N2:

f0,kq ≡
[
vec
(
FT

0G
q−1CkF0

)]T
f1,kq ≡

[
vec
(
FT

0G
q−1CkE+ ETGq−1CkF0

)]T
f2,kq ≡

[
vec
(
ETGq−1CkE

)]T
for k = 1, . . . , K and q = 1, . . . , Q. Also define the following vectors, for k = 1, . . . , K:

ik =
[
1 [k = 1] 1 [k = 2] . . . 1 [k = K]

]T
,

whose entries are equal to zero except in the k-th positions, where they are equal to
one. Thus, for u = 0, 1, 2, k = 1, . . . , K, and r, s = 0, 1, . . . :

φu,krs =


0T

ik ⊗ fu,k1
...

ik ⊗ fu,kQ

 vec
(
I ◦
[
F−r

0 ErΣ
(
F−s

0 Es
)T])

,

while

φ∗
u,krs = φu,krs − 1 [u = r = s = 0]


0T

ik ⊗ f0,k1
...

ik ⊗ f0,kQ

 vec (Σ) .

Here, ‘⊗’ denotes the Kronecker product. Hence, the vectors φ∗
u,krs differ from their

φu,krs counterparts only when u = r = s = 0, and indeed, φ∗
0,k00 = 0 for k = 1, . . . , K.

Consequently, all elements on the right-hand side of (A.3) multiply at least once one
element of vector θ0−θ̃ (the system of equations features no constant). Observe that,
for k = 1, . . . , K, the difference between φ0,k00 and φ∗

0,k00 equals the k-th column of
matrix Λ (θ0); it results from decomposing vector Λ (θ0)ξ0 in (A.1).
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For u = 0, 1, 2, k = 1, . . . , K, and r, s = 0, 1, . . . :

Φu,krs =


0T

ik ⊗ fu,k1
...

ik ⊗ fu,kQ

 [0 sβ sγ1 . . . sγK sδ1 . . . sδK
]
rs

where:

sβ,rs = vec
(
I ◦
[
F−r

0 ErF−1
0 SβΣ

(
F−s

0 Es
)T

+ F−r
0 ErΣST

β

(
F−s

0 EsF−1
0

)T])
and:

sγk,rs = ξ0kvec
(
I ◦
[
F−r

0 ErF−1
0 CkΣ

(
F−s

0 Es
)T

+ F−r
0 ErΣCT

k

(
F−s

0 EsF−1
0

)T])
sδk,rs = ξ0kvec

(
I ◦
[
F−r

0 ErF−1
0 GCkΣ

(
F−s

0 Es
)T

+ F−r
0 ErΣ (GCk)

T (F−s
0 EsF−1

0

)T])
for k = 1, . . . , K. The Ψ matrices are more elaborate; it is useful to partition each of
them between 2 (1 +K) vertical blocks of size 1 +QK × 2 (1 +K):

Ψu,krs =
[
Ψu,krs,1 Ψu,krs,2 Ψu,krs,3 . . . Ψu,krs,2(1+K)

]
,

and analyze the K “central” blocks Ψu,krs,2+h, for h = 1, . . . , K, first. For u = 0, 1, 2,
k = 1, . . . , K, and r, s = 0, 1, . . . :

Ψu,krs,2+h =


0T

ik ⊗ fu,k1
...

ik ⊗ fu,kQ

 [vα,h vβ,h vγ1,h . . . vγK ,h vδ1,h . . . vδK ,h

]
rs

where:
vα,h,rs = vec

(
I ◦
[
F−r

0 ErF−1
0 x̃hι

T
(
F−s

0 EsF−1
0

)T])
and:

vβ,h,rs = vec

(
I ◦
[
F−r

0 ErF−1
0

(
x̃h

(
α0ι+ X̃γ0 +GX̃δ0

)T (
I− β0G

T
)−1

GT +

+ ξ0,hChΥ0S
T
β

)(
F−s

0 EsF−1
0

)T])
,

where, using shorthand notation, Υ0 = F0ΣFT
0 ; and, for k = 1, . . . , K:

vγk,h,rs = vec
(
I ◦
[
F−r

0 ErF−1
0

[
x̃hx̃

T
k + ξ0,hξ0,kChΥ0C

T
k

] (
F−s

0 EsF−1
0

)T])
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vδk,h,rs = vec
(
I ◦
[
F−r

0 ErF−1
0

[
x̃hx̃

T
kG

T + ξ0,hξ0,kChΥ0

(
GCT

k

)T] (
F−s

0 EsF−1
0

)T])
.

The expressions for the blocks Ψu,krs,2+K+h, for h = 1, . . . , K, are derived similarly:
with some abuse of notation (which makes for a more succinct exposition) it is enough
to replace x̃h with Gx̃h and Ch with GCh in the vectors vα,h,rs, vβ,h,rs, vγk,h,rs and
vδk,h,rs above. Blocks Ψu,krs,1 and Ψu,krs,2 are also obtained similarly. In the former
case, one replaces x̃h with ι and ξ0hCh with an N ×N matrix of zeroes. In the latter
case, one replaces x̃h with the second column of Sx̃ and ξ0hCh with Sβ.

Under the maintained assumptions expression (A.3) equals zero only when θ̃ = θ0.
First, it is easy to verify that since the system features infinitely many powers ofψ0−ψ̃
that multiply linearly independent vectors, it must hold that ψ0 = ψ̃. This simplifies
the system to:

E
[
m1

(
θ̃
)]

=

[
Π0 +Π1 +

K∑
k=1

((
ξ0k − ξ̃k

)
− ξ0k

)
Φ0,k00

](
ϑ0 − ϑ̃

)
+

[
K∑
k=1

((
ξ0k − ξ̃k

)
− ξ0k

)
Ψ0,k00

]
vec

((
ϑ0 − ϑ̃

)(
ϑ0 − ϑ̃

)T)
+ [Λ (θ0)]

(
ξ0 − ξ̃

)
= 0.

One can verify that for Q ≥ 4, the row rank of the system of equations is at least as
large as the number of parameters θ: 3 (1 +K), so long as the three conditions from
the theorem’s statement: (i), (ii) and (iii), hold. Their role is as follows.

(i) Prevents social effects from canceling out in the reduced form of y as in models
with exogenous X; this can deliver a deficient rank for Sx̃, and hence Π0 +Π1.

(ii) Guarantees, together with Assumption 3, linear independence of at least 2+3K
rows of Π0 (this requires Q ≥ 4, hence the condition extending to G3).

(iii) Ensures full column rank of the Λ (θ) matrices, and hence linear independence
of all φu,krs vectors, all Φu,krs matrices, as well as all Ψu,krs matrices for different
values of k = 1, . . . , K and given u, r and s.

Note that these are sufficient, not necessary conditions. As in Lee and Liu (2010) and
analogous models, quadratic moments can supplement deficient identification.

We thus turn our attention to the quadratic moments: we analyze them summarily,
without developing a full solution like (A.3). Let:

E
[
m2,p

(
θ̃
)]

= E
[ [

(Sx̃ + Su)
(
ϑ0 − ϑ̃

)
+ F0υ

]T
·Pp·

·
[
(Sx̃ + Su)

(
ϑ0 − ϑ̃

)
+ F0υ

] ]
− Tr

(
PpΥ

(
θ̃
))
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i.e. the expectation of some generic p-th element of the second block, for p = 1, . . . , P ,
expressed as a function of an impostor structure θ̃. By developing and manipulating
the quadratic form inside the expectation, the above can be reformulated as:

E
[
m2,p

(
θ̃
)]

= vec
[(
ST
x̃PpSx̃ + E

[
ST
υPpSυ

])]T
vec

((
ϑ0 − ϑ̃

)(
ϑ0 − ϑ̃

)T)
+

+
[
vec
(
Pp +PT

p

)]T
Sv
ϑ

(
ϑ0 − ϑ̃

)
+ Tr

(
Pp

(
Υ (θ0)−Υ

(
θ̃
)))

(A.4)

where Sv
ϑ is a matrix of size N2 × 2 (1 +K) expressed as follows:

Sv
ϑ =

[
0 vec (SβΥ0) . . . ξ0kvec (CkΥ0) . . . . . . ξ0kvec (GCkΥ0) . . .

]
,

where the final 2K columns are understood to run over k = 1, . . . , K twice. The last
term in (A.4):

Tr
(
Pp

(
Υ (θ0)−Υ

(
θ̃
)))

= Tr
(
Pp

(
F0ΣFT

0 − F̃Σ̃F̃T
))

can be analyzed similarly as in the case of the first block of linear moments, yielding a
system of P higher-order polynomials of θ0− θ̃. A further inspection of (A.4) reveals
that the coefficients of these equations are linearly independent, because the {Pp}Pp=1

matrices are themselves linearly independent under Assumption 7; consequently, the
quadratic moments are zero in expectation if and only if θ̃ = θ0.

Proof of Theorem 2

Before proceeding we establish some auxiliary notation. For k = 1, . . . , K, let xk,N be
k-th column of XN (which is given as X∗,k in the text) and let E [xk,N ] = E [x̃k,N ] be its
expected value. Thus, E [xk,N ] is the k-th column of E [XN ]. Write the unconditional
expected value of yN as follows:

E [yN ] = (IN − β0GN)
−1 (α0ιN + E [XN ]γ0 +GNE [XN ]δ0) .

Let G̃N (β) ≡ GN (IN − βGN)
−1, and define the following vectors:

dN (θ) ≡ (α0 − α) ιN + (β0 − β)GNE [yN ] + E [XN ] (γ0 − γ) +GNE [XN ] (δ0 − δ) ,

eN (θ) ≡ εN + (XN − E [XN ]) (γ0 − γ) +GN (XN − E [XN ]) (δ0 − δ)+

+ (β0 − β) G̃N (β0) [εN + (XN − E [XN ])γ0 +GN (XN − E [XN ])δ0] .

Observe that εN (θ) = dN (θ)+eN (θ). For k = 1, . . . , K, define the following N×N
auxiliary matrices:

Γk,N (θ) ≡
[
(γ0,k − γk) IN + (δ0,k − δk)GN + (β0 − β) G̃N (β0) (γ0,kIN + δ0,kGN)

]
,
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where γ0,k and δ0,k are the “true” values of γk and δk, respectively. Define yet another
N ×N matrix:

∆N (θ) ≡
[
IN + (β0 − β) G̃N (β0)

]
,

and note that: eN (θ) =
∑K

k=1 Γk,N (θ) [xk,N − E [xk,N ]] +∆N (θ) εN . Furthermore,
let Υ0,N = ΥN (θ0), F0,N = IN +ψ0EN , and FN = IN +ψEN (the dependence on ψ
is implicit in FN); let ai,j,N be the (i, j)-th element of AN ; let qq,k,N be the k-th row
of Qq,N , for q = 1, . . . , Q and k = 1, . . . , K; and lastly, write

λN (θ) =
[
0 λ

T

1,1,N (θ) . . . λ
T

1,Q,N (θ) λ2,1,N (θ) . . . λ2,P,N (θ)
]T
,

a vector that collects the bias-correction terms of the moments, and whose individual
elements are denoted, with shorthand notation, by λℓ′,N (θ), for ℓ′ = 1, . . . , 1+QK+P .

This proof focuses on the analysis of the influence function

nN (θ) ≡ 1

N
ANmN (θ) ,

whose individual elements, denoted by nℓ,N (θ) for ℓ = 1, . . . , 1 +QK + P , are:

nℓ,N (θ) =
1

N

[
aℓ,1,N ι

T
NεN (θ) +

Q∑
q=1

K∑
k=1

aℓ,1+(q−1)K+k,Nqq,k,NεN (θ) +

+
P∑

p=1

aℓ,1+QK+p,Nε
T
N (θ)Pp,NεN (θ)−

1+QK+P∑
ℓ′=2

aℓ,ℓ′,Nλℓ′,N (θ)

]
. (A.5)

In what follows, we examine the three summations in brackets above. In the process,
we repeatedly apply Lemmas A.1, A.2 and A.3 by Lin and Lee (2010). In particular,

1

N
υT
NMNυN =

1

N
E
[
υT
NMNυN

]
+ oP (1) =

1

N
Tr [MNΣN ] + oP (1)

where MN is some matrix that depends on the context. The conditions underpinning
those lemmas are supported here by Assumptions 1, 2, 3, 4, 5, 7, and 9.

Start from the first summation and note that:

Q∑
q=1

K∑
k=1

aℓ,1+(q−1)K+k,Nqqk,NεN (θ) =

=

Q∑
q=1

K∑
k=1

aℓ,1+(q−1)K+k,Nqq,k,NdN (θ)︸ ︷︷ ︸
≡ ϖ∗

ℓ,N (θ)

+

Q∑
q=1

K∑
k=1

aℓ,1+(q−1)K+k,Nqq,k,NeN (θ)︸ ︷︷ ︸
≡ ρ∗ℓ,N (θ)

,
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where, uniformly in θ ∈ Θ:

1

N
ϖ∗

ℓ,N (θ) =
1

N

Q∑
q=1

K∑
k=1

aℓ,1+(q−1)K+k,N

(
Gq−1

N E [x̃k,N ]
)T

dN (θ) + oP (1) ,

while, given some K (2 +K) auxiliary (for the given ℓ and for k, h = 1, . . . , K):

∆̃∗
ℓ,k,N (θ) ≡

Q∑
q=1

aℓ,1+(q−1)K+k,N

(
Gq−1

N

)T
∆N (θ)

Γ̃∗
ℓ,k,N (θ) ≡

Q∑
q=1

aℓ,1+(q−1)K+k,N

(
Gq−1

N

)T
[∆N (θ)− IN ]

Γ̃∗
ℓ,k,h,N (θ) ≡

Q∑
q=1

aℓ,1+(q−1)K+k,N

(
Gq−1

N

)T
Γh,N (θ) ,

it is, again uniformly in θ ∈ Θ:

1

N
ρ∗ℓ,N (θ) =

1

N

K∑
k=1

(xh,N − E [xk,N ])
T ∆̃∗

ℓ,k,N (θ) εN

+
1

N

K∑
k=1

K∑
h=1

(xk,N − E [xk,N ])
T Γ̃∗

ℓ,k,h,N (θ) (xh,N − E [xh,N ])

=
1

N

1+QK∑
ℓ′=2

aℓ,ℓ′,Nλℓ′,N (θ0) +
1

N

K∑
k=1

ξ0,kTr
(
CT

k,N Γ̃
∗
ℓ,k,N (θ)Υ0,N

)
+

1

N

K∑
k=1

K∑
h=1

ξ0,kξ0,hTr
(
CT

k,N Γ̃
∗
ℓ,k,h,N (θ)Ch,NΥ0,N

)
+ oP (1) . (A.6)

The second summation in (A.5) can instead be decomposed as:

P∑
p=1

aℓ,1+QK+p,Nε
T
N (θ)Pp,NεN (θ) =

P∑
p=1

aℓ,1+QK+p,Nd
T
N (θ)Pp,NdN (θ)+

+
P∑

p=1

aℓ,1+QK+p,Nd
T
N (θ)

(
Pp,N +PT

p,N

)
eN (θ)︸ ︷︷ ︸

≡ ϖ∗∗
ℓ,N (θ)

+
P∑

p=1

aℓ,1+QK+p,Ne
T
N (θ)Pp,NeN (θ)︸ ︷︷ ︸

≡ ρ∗∗ℓ,N (θ)

,

where two asterisks differentiate any function of θ from the corresponding one in the
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analysis of the first summation. Thus, uniformly in θ ∈ Θ:

1

N
ϖ∗∗

ℓ,N (θ) =
1

N

P∑
p=1

aℓ,1+QK+p,Nd
T
N (θ)

(
Pp,N +PT

p,N

) [
∆N (θ) εN +

+
K∑
k=1

Γk,N (θ) [(xk,N − E [xk,N ]) + ξ0,kCk,NεN ]

]
= oP (1) ,

while, given 2 +K +K2 auxiliary matrices (for the given ℓ and for k, h = 1, . . . , K):

∆̃∗∗
ℓ,N (θ) ≡

P∑
p=1

aℓ,1+QK+p,N∆N (θ)Pp,N∆N (θ)

Γ̃∗∗
ℓ,N (θ) ≡

P∑
p=1

aℓ,1+QK+p,N [∆N (θ)Pp,N∆N (θ)−Pp,N ]

Γ̃∗∗
ℓ,k,N (θ) ≡

P∑
p=1

aℓ,1+QK+p,N∆N (θ)
(
Pp,N +PT

p,N

)
Γk,N (θ)

Γ̃∗∗
ℓ,k,h,N (θ) ≡

P∑
p=1

aℓ,1+QK+p,NΓ
T
k,N (θ)Pp,NΓh,N (θ) ,

one obtains, uniformly in θ ∈ Θ:

1

N
ρ∗∗ℓ,N (θ) =

1

N
εTN∆̃

∗∗
ℓ,N (θ) εN +

1

N

K∑
k=1

εTN Γ̃
∗∗
ℓ,k,N (θ) (xk,N − E [xk,N ])

+
1

N

K∑
k=1

K∑
h=1

(xk,N − E [xk,N ])
T Γ̃∗∗

ℓ,k,h,N (θ) (xh,N − E [xh,N ])

=
1

N

1+QK+P∑
ℓ′=2+QK

aℓ,ℓ′,Nλℓ′,N (θ0) +
1

N
Tr
(
Γ̃∗∗

ℓ,N (θ)Υ0,N

)
+

1

N

K∑
k=1

ξ0,kTr
(
Γ̃∗∗

ℓ,k,N (θ)Ck,NΥ0,N

)
+

1

N

K∑
k=1

K∑
h=1

ξ0,kξ0,hTr
(
CT

k,N Γ̃
∗∗
ℓ,k,h,N (θ)Ch,NΥ0,N

)
+ oP (1) . (A.7)

Lastly, consider the third summation within (A.5), and express any of its elements
as λℓ′,N (θ) = Tr

(
Mℓ′,NΥN (θ)

)
, for ℓ′ = 2, . . . , 1 + QK + P , where Mℓ′,N is some

matrix that depends on the position of the index ℓ′ (for example, if ℓ′ = 1+QK +P ,
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it is Mℓ′,N = PP,N). One can decompose this term further as:

λℓ′,N (θ) = Tr
(
Mℓ′,NFN

[
diag

(
υ21 (θ) , . . . , υ

2
N (θ)

)]
FT

N

)
=
[
vec
(
FT

NMℓ′,NFN

)]T
vec
(
IN ◦

[
F−1

N εN (θ) εTN (θ)
(
F−1

N

)T])
where the second vector in the second line only has N non-zero entries, and each of
these is a second-degree polynomial of the elements of εN (θ). Hence, one can write:

λℓ′,N (θ) =
N∑
i=1

N∑
j=1

lℓ′,i,j,N (ψ) εi,N (θ) εj,N (θ)

= εTN (θ)Lℓ′,N (ψ) εN (θ)

where Lℓ′,N (ψ) is a matrix whose (i, j)-th entries, denoted here by lℓ′,i,j,N (ψ), can be
expressed as functions of Mℓ′,N , FN and F−1

N . Since FN = F0,N − EN (ψ0 −ψ) and

F−1
N = F−1

N F0,NF
−1
0,N =

[
IN + F−1

N EN (ψ0 −ψ)
]
F−1

0,N ,

such a matrix is a function of ψ. Under the model’s assumptions, Lℓ′,N (ψ) is bounded
in absolute value in both row and column sums. Because λℓ′,N (θ) is a quadratic form
of εN (θ), the third summation in (A.5) can be developed similarly to the second one.
Thus, uniformly in θ ∈ Θ:

1+QK+P∑
ℓ=2

aℓ,ℓ′,Nλℓ′,N (θ) =

1+QK+P∑
ℓ=2

aℓ,ℓ′,Nd
T
N (θ)Lℓ′,N (ψ)dN (θ)+

+
1

N

1+QK+P∑
ℓ′=2

aℓ,ℓ′,Nλ
∗
ℓ′,N (ψ) +

1

N
Tr
(
Γ̃∗∗∗

ℓ,N (θ)Υ0,N

)
+

1

N

K∑
k=1

ξ0,kTr
(
Γ̃∗∗∗

ℓ,k,N (θ)Ck,NΥ0,N

)
+

1

N

K∑
k=1

K∑
h=1

ξ0,kξ0,hTr
(
CT

k,N Γ̃
∗∗∗
ℓ,k,h,N (θ)Ch,NΥ0,N

)
+ oP (1) , (A.8)

where, for ℓ′ = 2, . . . , 1 +QK + P , by Lemma A.3 in Lin and Lee (2010):

1

N
εTNLℓ′,N (ψ) εN ≡ 1

N
Tr [Lℓ′,N (ψ)Υ0,N ]︸ ︷︷ ︸

≡ λ∗ℓ′,N (ψ)

+oP (1) ,

which implicitly provides the definition for the λ∗ℓ′,N (ψ) terms that appear in (A.8);
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and where, again, some additional 1 +K +K2 auxiliary matrices are being used:

Γ̃∗∗∗
ℓ,N (θ) ≡

1+QK+P∑
ℓ′=2

aℓ,ℓ′,N [∆N (θ)Lℓ′,N (ψ)∆N (θ)− Lℓ′,N (ψ)]

Γ̃∗∗∗
ℓ,k,N (θ) ≡

1+QK+P∑
ℓ′=2

aℓ,ℓ′,N∆N (θ)
(
Lℓ′,N (ψ) + LT

ℓ′,N (ψ)
)
Γk,N (θ)

Γ̃∗∗∗
ℓ,k,h,N (θ) ≡

1+QK+P∑
ℓ′=2

aℓ,ℓ′,NΓ
T
k,N (θ)Lℓ′,N (ψ)Γh,N (θ) ,

for the given ℓ and for k, h = 1, . . . , K (this time using three asterisks).
It is useful to study the λ∗ℓ′,N (ψ) terms more elaborately. As Υ0,N = F0,NΣNF

T
0,N ,

for ℓ′ = 2, . . . , 1 +QK + P it is:

λ∗ℓ′,N (ψ) = Tr
[
Σ

1
2
NF

T
0,NLℓ′,N (ψ)F0,NΣ

1
2
N

]
=

N∑
i=1

N∑
j=1

lℓ′,i,j,N (ψ) f0,i,N f
T
0,j,N

=
[
vec
(
FT

NMℓ′,NFN

)]T
vec
(
IN ◦

[
F−1

N F0,NΣNF
T
0,N

(
F−1

N

)T])
,

where f0,i,N here denotes the i-th row of F0,NΣ
1
2
N , for i = 1, . . . , N . This derivation is

obtained by reverse-engineering the transformation leading to Lℓ′,N (ψ). For ψ = ψ0,
because ΣN is a diagonal matrix this expression simplifies to:

λ∗ℓ′,N (ψ0) =
[
vec
(
FT

0,NMℓ′,NF0,N

)]T
vec (ΣN) = λℓ′,N (θ0) ,

and therefore in the influence function, the λ∗ℓ′,N (ψ0) terms in (A.8) cancel out with
the corresponding λℓ′,N (θ0) terms in (A.6) and (A.7). Because dN (θ) and all matrices
of the Γ∗

ℓ,·,N (θ), Γ∗∗
ℓ,·,N (θ) and Γ∗∗∗

ℓ,·,N (θ) kind are also equal to zero(es) when evaluated
at θ = θ0, one concludes that nN (θ0) = oP (1), as expected. To complete this part of
the proof, note that nN (θ) is quadratic in θ and Θ is bounded, hence, E [nN (θ)] is
uniformly equicontinuous in Θ. This fact, along with the identification conditions for
θ (as specified in Theorem 1), implies that the identification uniqueness conditions
for E

[
nT
N (θ)nN (θ)

]
are satisfied. Hence, consistency of the GMM estimator follows

from standard arguments (White, 1996).
Next, we move to the proof of asymptotic normality. The typical manipulation of

the GMM First Order Conditions via the Mean Value Theorem gives:

√
N
(
θ̂GMM − θ0

)
= −

[
JT
N

(
θ̂GMM

)
WNJN

(
θN

)]−1

JT
N

(
θ̂GMM

)
WN

√
NmN (θ0)
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where θN is a convex combination of θ̂GMM and θ0, and:

JN (θ) =
∂

∂θT
mN (θ) =

= − 1

N



ιTN
Q1,N

...
QQ,N

2εTN (θ)P1,N
...

2εTN (θ)PP,N


[
ιN GNyN XN GNXN 0N . . . 0N

]

︸ ︷︷ ︸
≡ J∗

N (θ)

− 1

N

∂λN (θ)

∂θT
.

An inspection of (A.5) and of its decomposition reveals that ANmN (θ0) is a a vector
of linear-quadratic forms of εN , and hence of υN . For ℓ = 1, . . . , 1 +QK + P :

Nnℓ,N (θ0) =

Q∑
q=1

K∑
k=1

aℓ,1+(q−1)K+k,N

[(
qq,k,N − υT

NF
T
0,NCk,NG

q−1
N ξ0,k

)
F0,NυN

]
+

+
P∑

p=1

aℓ,1+QK+p,NTr
(
Pp,NF0,N

(
υNυ

T
N −ΣN

)
FT

0,N

)
.

By Assumptions 1, 2, 3, 4, 5, 7, and 9, the stochastic portion of the expression above
complies with the conditions of Theorem 1 by Kelejian and Prucha (2001), hence:

√
NANmN (θ0)

d→ N
(
0,A0Ω0A

T
0

)
. (A.9)

We proceed to show that JN

(
θ̂GMM

)
= J0+ oP (1). We thus study the quantity:

d

dβ

(
1

N
εTN (θ)MNεN (θ)

)
= − 2

N
εTN (θ)MNGNyN (A.10)

for some given absolutely bounded matrix MN , showing uniform convergence over Θ.
If MN = Pp,N for any p = 1, . . . , P , for example, this quantity lies the second column
of J∗

N (θ); other elements of J∗
N (θ) are simpler cases of it. Expand (A.10) as:

− 2

N
εTN (θ)MNG̃N (β0) (α0ι+XNγ0 +GNXNδ0 + εN) =

= −2

(
ϵ∗N (θ) + η∗N (θ) +

K∑
k=1

υ∗k,N (θ)

)
,
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where, uniformly in θ ∈ Θ:

ϵ∗N (θ) =
1

N
dT
N (θ)MNGNyN =

1

N
dT
N (θ)MNGNE [yN ] + oP (1) ,

and, uniformly in θ ∈ Θ:

η∗N (θ) =
1

N
εTN∆

T
N (θ)MNGNyN

=
1

N

K∑
k=1

ξ0,kTr
(
∆T

N (θ)MNG̃N (β0) (γ0,kIN + δ0,kGN)Ck,NΥ0,N

)
1

N
Tr
(
∆T

N (θ)MNG̃N (β0)Υ0,N

)
+ oP (1) ,

and, for k = 1, . . . , K, uniformly in θ ∈ Θ:

υ∗k,N (θ) =
1

N
(xk,N − E [xk,N ])

T ΓT
0,k (θ)MNGNyN

=
1

N
ξ0,k

K∑
h=1

ξ0,hTr
(
CT

k,NΓ
T
0,k (θ)MNG̃N (β0) (γ0,hIN + δ0,hGN)Ch,NΥ0,N

)
1

N
ξ0,kTr

(
CT

k,NΓ
T
0,k (θ)MNG̃N (β0)Υ0,N

)
+ oP (1) .

Evaluating these terms at θ = θ0 and collecting them gives:

− 2

N
υT (θ0)MNGNyN = − 2

N
Tr
[
MNG̃N (β0)Υ0,N

]
−

− 2

N

K∑
k=1

ξ0,kTr
[
MNG̃N (β0) (γ0,kIN + δ0,kGN)Ck,NΥ0,N

]
+ oP (1) ,

yielding the uniform convergence result that is sought after, which as argued can be
generalized to all components of JN (θ). Since the GMM estimator is consistent, this
straightforwadly implies JN

(
θN

)
= J0 + oP (1) as well.

We conclude the analysis by examining the Jacobian of λN (θ). For q = 1, . . . , Q
and k = 1, . . . , K:

∂λ1,q,k,N (θ)

∂θT
= ξkυN (θ)T

(
IN ◦

[
FT

N

[
Gq−1

N Ck,N +
(
Gq−1

N Ck,N

)T]
FN

]) ∂υN (θ)

∂θT
+

+
K∑
k=1

[
0T
2+2K iTkTr

(
FNUN (θ)FT

NG
q−1
N Ck,N

)
0
]
+

+
[
0T
2+3K ξkTr

(
Gq−1

N Ck,N

(
ENUN (θ)FT

N + FNUN (θ)ET
N

))]
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where 02+2K (02+3K) is a vector of 2+2K (2+3K) zeroes; vector ik, for k = 1, . . . , K,
is as defined in the proof of Theorem 1;

UN (θ) ≡ diag
(
υ21 (θ) , . . . , υ

2
N (θ)

)
and:

∂υN (θ)

∂θT
= −F−1

N

[
ιN GNyN XN GNXN 0N . . . 0N

]
.

Similarly, for p = 1, . . . , P :

∂λ1,p,N (θ)

∂θT
= υN (θ)T

(
IN ◦

[
FT

N

(
Pp,N +PT

p,N

)
FN

]) ∂υN (θ)

∂θT
+

+
[
0T
2+3K Tr

(
Pp,N

(
ENUN (θ)FT

N + FNUN (θ)ET
N

))]
.

All these derivatives retain the mathematical structure of (A.10); this follows because,
as shown previously, λN (θ) can be expressed as a vector of quadratic forms of εN (θ).
Consequently, they can be decomposed similarly to (A.10) so as to show that:

1

N

∂λN (θ)

∂θT
=

1

N

∂λN (θ0)

∂θT
+ oP (1) .

These results are combined with (A.9) via Slutsky’s Theorem to establish asymptotic
normality of the proposed GMM estimator. This concludes the proof.
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Addendum A Bias of conventional methods
This section elaborates the analysis of the bias entailed by conventional methods for
the estimation of social effects – specifically Bramoullé et al. (2009, henceforth BDF)
– as anticipated in footnote 21 of the main text. First, recall that under an exogeneity
assumption about the matrix of covariates X, BDF proposed a consistent estimator
which employs the spatial lags of the covariates themselves as instruments. To better
understand the source of endogeneity in the model presented in this paper, it is useful
to examine the bias of both OLS and the BDF moments. Consider a simplified version
of (1), with K = 1, δ = ψ = 0, and homoschedastic errors (Σ = σ2

0I, σ2
0 > 0):

y = αι+ βGy + γx+ ε.

With exogenous x (ξ = 0 or C = 0), OLS would be based on the following moments:

E
[
ιTε
]
= 0

E
[
(Gy)T ε

]
= σ2

0Tr
(
(I− βG)−1GT

)
(A.11)

E
[
xTε

]
= 0.

The bias arising from endogneity is proportional to the right-hand side of (A.11).
Since Gy linearly depends on ε, this moment is non-zero in expectation, and therefore
OLS is inconsistent. BDF circumvent this problems by replacing (A.11) with:

E
[
(Gqx)T ε

]
= 0

for some positive integer q ∈ N. The above equals zero in expectation and is therefore
valid so long as the adjacency matrix G satisfies a the conditions spelled out by BDF
(i.e. I, G and possibly G2 need to be linearly independent).

The model we consider introduces correlation between x and ε. The key OLS and
BDF moments are, under endogeneity (ξ ̸= 0, C ̸= 0):

E
[
(Gy)T ε

]
= E

[
(γx+ ε)T (I− βG)−1Gε

]
= σ2Tr

([
γξCT + I

]
(I− βG)−1GT

) (A.12)

and, for q ∈ N0:
E
[
(Gqx)T ε

]
= σ2ξTr

(
(GqC)T

)
. (A.13)

Hence, both (A.12) and (A.13) are non-zero. Expression (A.12) comprises two terms,
that encode the endogeneity of Gy and x, respectively. Instead, the bias in (A.13) is
entirely due to the endogeneity of x. Both biases depend crucially on the interaction
between the spatial weighting (or adjacency) matrix G and the characteristics matrix
C, which jointly determine the spatial correlation of the variables at hand.
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Addendum B A game of social interactions
The literature in spatial econometrics and peer or social effects has emphasized the
microfoundation of econometric models with spatial lags of the dependent variable as
equilibrium outcomes of games of social interactions (e.g. public good games) where
agents have quadratic utilities and cost functions. Here we propose a complementary
microfoundation based on exponential functions instead. Its advantages are twofold.
First, it generalizes to familiar settings in economics such as games between firms with
Cobb-Douglas production functions. Second, it loads model (15), which features the
network indegree as a right-hand side variable of interest, with interpretation.

We consider a public good game where N players indexed as i = 1, . . . , N interact
in a network, which is exogenous and whose topology is summarized by an adjacency
matrix G with zero diagonal and entries gij. This game applies to settings like peer
effects at school and firms’ R&D investment decisions with knowledge spillovers: our
running examples. Players are heterogeneous and typified by a variable that we denote
as χi (e.g. the prior background of students, or the established production capacity
of firms). Players maximize the following “twice exponential” utility function:

Ui (e1, . . . , eN ;χi) = exp [yi (e1, . . . , eN ;χi)]− exp (ei) , (A.14)

where yi is the individual-level outcome (denoting, say, grades, or production output).
The latter is determined through a linear relationship which implies a Cobb-Douglas
contribution to the “benefit” component of utility (A.14):

yi (e1, . . . , eN ;χi) = π+ µei + ν
N∑
i=1

gijej + χi. (A.15)

Individual outcomes depend on χi and on a costly strategic variable ei that we name
effort : it represents, for instance, time dedicated to homeworks in a peer effects setting
or R&D investment. Because of social interactions and externalities, yi also depends
on the effort of all the other players that an agent is connected to. The private and
social effects of effort are parametrized as µ > 0 and 0 < ν < 1, respectively (we could
allow −1 < ν < 0 to introduce negative externalities, as in models about the “business
stealing” effect of R&D, but we prefer to retain the public good interpretation of ei).
Note that in this model, all variables (including the weighted sum of peer effort) are
complements with one another, unlike in quadratic utility models typical of the peer
effects literature (e.g. Blume et al., 2015). We further define the combined parameter
β ≡ ν/ (1− µ) and assume that matrix I− βG is nonsingular.

We discuss a game of complete information: that is, χ ≡ (χ1, . . . , χN) is common
knowledge. The first order conditions are readily summarized by the expression:

ej = yj + logµ
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for i = 1, . . . , N , and it is easy to verify that this model’s (unique) Nash equilibrium
is expressed as:

yi = α+ β
N∑
j=1

gijyj + ϕ
N∑
j=1

gij +
χi

1− ν
(A.16)

for i = 1, . . . , N , with α ≡ [π+ µ logµ] / (1− µ) and ϕ ≡ ν logµ/ (1− µ). Now let:

(1− ν)−1
χ = Xγ+GXδ+ ε

where ε is a vector of unobserved shocks and X represents observed variables possibly
dependent on ε as per the SLE specification (2). Stacking (A.16) over all observations
would then yield model (15) in the text. Note that the separate identification of β and
ϕ as per Corollary 2 allows to solve for the more fundamental, primitive parameters
µ and ν, even if effort is unobserved. The main structural equation (1) in the text is
obtained from this model when the adjacency matrix is “row-normalized” (ḡ = ι) as
typical in studies about peer effects. In this case, the intercept of the model embodies
both the intercept of (A.16) and ϕ; specifically, it is α = [π+ (µ+ ν) logµ] / (1− µ).

Addendum C Estimation of the asymptotic variance
What follows elaborates upon variance-covariance matrix of the model’s moments Ω0

that is introduced in Section 4. The analysis of this matrix and of its sample analogue
clarifies how standard errors for our proposed estimator are to be calculated. Write:

Ω0 =
1

N

 ωN,1,1 . . . ωN,1,1+QK+P
... . . . ...

ωN,1+QK+P,1 . . . ωN,1+QK+P,1+QK+P

+ oP (1) ,

and note that this matrix is symmetric: ωN,i,j = ωN,j,i for all i, j = 1, . . . , 1+QK+P .
Let Σ∗

N = diag (E [υ31] ,E [υ32] , . . . ,E [υ3N ]): an N ×N matrix. In addition:

Σ‡
N = IN ⊗Σ†,diag

N +
(
ιN ι

T
N − IN

)
⊗Σ∗∗,out

N

is an N2 ×N2 matrix whose constituent blocks, written as Σ†,diag
N and Σ†,out

N , are the
following symmetric N ×N matrices:

Σ†,out
N =


E [υ21]E [υ21] E [υ21]E [υ22] . . . E [υ21]E [υ2N ]
E [υ22]E [υ21] E [υ22]E [υ22] . . . E [υ22]E [υ2N ]

...
... . . . ...

E [υ2N ]E [υ41] E [υ2N ]E [υ22] . . . E [υ2N ]E [υ2N ]

 ,
and Σ†,diag

N = Σ†,out
N − IN ◦Σ†,out

N + diag (E [υ41] ,E [υ42] , . . . ,E [υ4N ]).
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Using these matrices as well as F0,N = IN +ψ0EN , Ω0 is completely characterized
by the following expressions, for k, k′ = 1, . . . , N , q, q′ = 1, . . . , Q, and p, p′ = 1, . . . , P :

ωN,1,1 = ι
T
NF

T
0,NΣNF0,N ιN

ωN,1+K(q−1)+k,1 = ξ0,kTr
(
F0,N ◦ FT

0,N

(
Gq−1

N

)T
F0,N ◦Σ∗

N

)
+ ιTNF

T
0,NΣNF0,NG

q−1
N x̃k,N

ωN,1+QK+p,1 = Tr
(
F0,N ◦ FT

0,NPNF0,N ◦Σ∗
N

)
ωN,1+K(q−1)+k,1+K(q′−1)+k′ = ξ0,kξ0,k′vec

(
FT

0,NG
q−1
N Ck,NF0,N

)T ·

·Σ‡
Nvec

(
FT

0,NG
q′−1
N Ck′,NF0,N

)
+ ξ0,kι

T
N

(
FT

0,NG
q−1
N Ck,NF0,N ◦Σ∗

N

)
FT

0,NG
q′−1
N x̃k′,N

+ ξ0,k′ι
T
N

(
FT

0,NG
q′−1
N Ck′,NF0,N ◦Σ∗

N

)
FT

0,NG
q−1
N x̃k,N

− ξ0,kTr
(
FT

0,N

(
Gq−1

N Ck,N

)T
F0,NΣN

)
·

· ξ0,k′Tr
(
FT

0,N

(
Gq′−1

N Ck′,N

)T
F0,NΣN

)
+
(
Gq−1

N x̃k,N

)T
FT

0,NΣNF0,NG
q′−1
N x̃k′,N

ωN,1+K(q−1)+k,1+QK+p = ξ0,kvec
(
FT

0,NG
q−1
N Ck,NF0,N

)T
Σ‡

Nvec
(
FT

0,NP
T
p,NF0,N

)
+ ιTN

(
FT

0,NPp,NF0,N ◦Σ∗
N

)
FT

0,NG
q−1
N x̃k,N

− ξ0,kTr
(
FT

0,N

(
Gq−1

N Ck,N

)T
F0,NΣN

)
·

· Tr
(
FT

0,NPp,NF0,NΣN

)
ωN,1+QK+p,1+QK+p′ = vec

(
FT

0,NPp,NF0,N

)T
Σ‡

Nvec
(
FT

0,NPp′,NF0,N

)
− Tr

(
FT

0,NPp,NF0,NΣN

)
Tr
(
FT

0,NPp′,NF0,NΣN

)
.

A consistent estimator of Ω0 is obtained as:

Ω̂N =
1

N

 ω̂N,1,1 . . . ω̂N,1,1+QK+P
... . . . ...

ω̂N,1+QK+P,1 . . . ω̂N,1+QK+P,1+QK+P


where for i, j = 1, . . . , 1+QK+P , each element ω̂N,i,j is obtained as an approppriate
counterpart of ωN,i,j. In particular, after obtaining the GMM estimate one calculates:

F̂N = IN + ψ̂GMMEN

υ̂N = F̂−1
N

(
yN − α̂GMM ι− β̂GMMGNyN −XN γ̂GMM −GNXN δ̂GMM

)
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and thus, ΣN is replaced with diag (υ̂21, . . . , υ̂
2
N); Σ∗

N with diag (υ̂31, . . . , υ̂
3
N); Σ

‡
N with

an analogous N2 ×N2 matrix where all moments of the E [υoi ] kind, for i = 1, . . . , N

and o = 2, 4, are replaced simply with υ̂oi ; F0,N is replaced with F̂N ; and lastly, x̃k,N ,
for k = 1, . . . , K, is replaced with:

̂̃xk,N = X∗,k,N − ξ̂k,GMMCk,N F̂N υ̂N .

If the model also featured moments of the E
[
zTNε (θ)

]
= 0 kind, where zN is some

exogenous variable, the analysis of Ω0 and its consistent estimator is straightforward
to extend. For each such variable, one would add one row and one column to Ω0; for
simplicity, let them both indexed by 0. Thus, the elements ωN,0,∗ from the extra row
are akin to those of the ωN,1,∗ kind, but with zN instead of ιN ; similarly, zN replaces
ιN in the extra column. The element where the extra row and column cross is simply:

ωN,0,0 = E
[(
zTNε (θ)

)2]
= zTNF

T
0,NΣNF0,NzN .

The construction of Ω̂N in this case requires the calculation of the residuals υ̂N to be
appropriately revised to accommodate the additional variable(s) zN .

Addendum D Additional Monte Carlo experiments
The tables of this section summarize additional Monte Carlo experiments built around
variations of the baseline from Section 5. What follows is a brief summary of each.

• Table A.1 provides an example about how our baseline simulation from Table
1 responds to slight perturbations of key regression parameter such as β or γ.
The results are virtually unchanged. Analogous results are obtained for different
values of β and/or γ.

• Table A.2 removes some key parameters from the d.g.p.: either ξ or ψ is zero. In
the former case, endogeneity is removed from the model; in the latter case, the
structural errors are independent. The simulation results change as expected; in
particular, when ξ = 0 conventional methods based on spatial lags of x (‘2SLSb’
and ‘3SLS’) appear to estimate β accurately.

• Table A.3 is obtained by modifying the small-world algorithm, so that it either
yields denser (B = 4) or more irregular (b = 0.95) networks with respect to the
baseline. The results are qualitatively the same as in Table 1.

• Table A.4 reports on an exercise about changing features of the model’s spatial
structure; in particular, C = I+G. Interestingly, if C is misspecified by setting
Ce = I+G+G2, the estimate of ξ worsens relative to the baseline, but those
of β and γ do not appear to deteriorate to the same extent.
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Table A.1: Monte Carlo Simulations, perturbed parameters (part one)

Target
Parameter

Experiment A1: as in experiment 1, but with stronger social effects (β = 0.5)

GMM1 GMM2 GMM3 GMM4 OLS 2SLSa 2SLSb 2SLSc 3SLS

α = 0.25 0.249 0.250 0.249 0.285 0.234 0.218 0.251 0.212 0.250
(0.022) (0.023) (0.024) (0.020) (0.008) (0.014) (0.056) (0.341) (0.155)
[0.025] [0.025] [0.024] [0.016] [0.008] [0.013] [0.156] [2.142] [0.686]
{0.902} {0.901} {0.872} {0.448} {0.000} {0.000} {0.060} {0.787} {0.253}

β = 0.50 0.501 0.500 0.501 0.475 0.511 0.524 0.499 0.527 0.501
(0.015) (0.015) (0.016) (0.013) (0.005) (0.010) (0.025) (0.261) (0.084)
[0.018] [0.017] [0.017] [0.011] [0.005] [0.010] [0.068] [2.220] [0.383]
{0.910} {0.905} {0.874} {0.434} {0.000} {0.000} {0.017} {0.310} {0.121}

γ = 0.50 0.500 0.500 0.500 0.538 0.576 0.568 0.569 0.473 0.554
(0.013) (0.013) (0.014) (0.011) (0.005) (0.008) (0.425) (0.758) (1.223)
[0.010] [0.010] [0.010] [0.007] [0.006] [0.007] [1.360] [12.787] [6.530]
{0.828} {0.830} {0.808} {0.018} {0.000} {0.000} {0.272} {0.524} {0.546}

χ = 1.00 0.999 0.999 0.999 1.003 0.997 0.993 1.000 0.990 1.000
(0.008) (0.008) (0.008) (0.007) (0.007) (0.007) (0.016) (0.070) (0.040)
[0.005] [0.005] [0.005] [0.004] [0.006] [0.007] [0.046] [0.306] [0.208]
{0.764} {0.766} {0.761} {0.697} {0.000} {0.000} {0.005} {0.039} {0.057}

ξ = 10.0 9.853 9.813 9.824 6.968 – – – – –
(0.819) (0.774) (0.855) (0.720)
[0.547] [0.550] [0.552] [0.405]
{0.771} {0.794} {0.769} {0.001}

ψ = 0.25 0.241 0.244 0.236 0.233 – – – – –
(0.068) (0.071) (0.077) (0.097)
[0.087] [0.086] [0.083] [0.052]
{0.931} {0.924} {0.899} {0.665}

Target
Parameter

Experiment A2: as in experiment 1, but with weaker covariate effects (γ = 0.2)

GMM1 GMM2 GMM3 GMM4 OLS 2SLSa 2SLSb 2SLSc 3SLS

α = 0.25 0.248 0.246 0.246 0.287 0.239 0.180 0.251 0.191 0.249
(0.027) (0.029) (0.031) (0.026) (0.008) (0.034) (0.028) (0.527) (0.160)
[0.063] [0.053] [0.051] [0.027] [0.009] [0.029] [0.055] [1.961] [0.533]
{0.943} {0.937} {0.913} {0.629} {0.000} {0.015} {0.055} {0.848} {0.248}

β = 0.40 0.402 0.403 0.404 0.369 0.410 0.461 0.399 0.453 0.399
(0.022) (0.024) (0.025) (0.021) (0.007) (0.030) (0.019) (0.469) (0.117)
[0.053] [0.044] [0.042] [0.023] [0.007] [0.025] [0.036] [1.835] [0.402]
{0.944} {0.943} {0.918} {0.616} {0.000} {0.000} {0.023} {0.571} {0.155}

γ = 0.20 0.200 0.200 0.200 0.244 0.280 0.268 0.279 0.227 0.349
(0.014) (0.014) (0.014) (0.012) (0.005) (0.008) (0.255) (0.446) (1.812)
[0.011] [0.010] [0.010] [0.007] [0.005] [0.008] [0.618] [2.934] [5.851]
{0.804} {0.799} {0.796} {0.014} {0.000} {0.000} {0.517} {0.877} {0.694}

χ = 1.00 1.000 0.999 0.999 1.004 0.998 0.987 1.000 0.988 1.000
(0.008) (0.008) (0.008) (0.007) (0.007) (0.010) (0.014) (0.120) (0.043)
[0.007] [0.007] [0.007] [0.005] [0.006] [0.009] [0.029] [0.422] [0.243]
{0.826} {0.818} {0.801} {0.720} {0.000} {0.000} {0.002} {0.061} {0.072}

ξ = 10.0 9.839 9.816 9.813 6.619 – – – – –
(0.841) (0.782) (0.868) (0.822)
[0.672] [0.633] [0.629] [0.519]
{0.799} {0.834} {0.776} {0.008}

ψ = 0.25 0.240 0.238 0.233 0.158 – – – – –
(0.066) (0.067) (0.074) (0.092)
[0.124] [0.105] [0.100] [0.063]
{0.950} {0.951} {0.927} {0.586}

See the notes accompanying Table 1 for a description of this table’s structure.
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Table A.2: Monte Carlo Simulations, perturbed parameters (part two)

Target
Parameter

Experiment A3: as in experiment 1, but with no endogeneity (ξ = 0)

GMM1 GMM2 GMM3 GMM4 OLS 2SLSa 2SLSb 2SLSc 3SLS

α = 0.25 0.250 0.253 0.251 0.252 0.228 0.252 0.250 0.251 0.247
(0.038) (0.039) (0.039) (0.038) (0.012) (0.048) (0.032) (0.334) (0.079)
[0.025] [0.025] [0.025] [0.027] [0.011] [0.048] [0.076] [0.687] [0.610]
{0.771} {0.746} {0.723} {0.767} {0.000} {0.015} {0.067} {0.824} {0.233}

β = 0.40 0.400 0.398 0.400 0.398 0.419 0.398 0.400 0.399 0.403
(0.031) (0.032) (0.032) (0.031) (0.009) (0.042) (0.021) (0.293) (0.070)
[0.021] [0.021] [0.020] [0.022] [0.009] [0.042] [0.046] [0.604] [0.423]
{0.775} {0.751} {0.724} {0.763} {0.000} {0.005} {0.029} {0.553} {0.142}

γ = 0.50 0.496 0.496 0.498 0.499 0.490 0.500 0.474 0.487 0.538
(0.040) (0.036) (0.038) (0.023) (0.016) (0.023) (0.842) (0.336) (2.280)
[0.023] [0.020] [0.021] [0.012] [0.013] [0.025] [4.236] [0.650] [11.64]
{0.739} {0.718} {0.721} {0.692} {0.000} {0.000} {0.624} {0.542} {0.738}

χ = 1.00 1.000 1.000 1.000 1.000 0.996 1.001 1.000 1.001 1.000
(0.008) (0.008) (0.008) (0.008) (0.008) (0.012) (0.017) (0.069) (0.034)
[0.005] [0.005] [0.005] [0.005] [0.008] [0.012] [0.072] [0.136] [0.206]
{0.717} {0.723} {0.716} {0.713} {0.000} {0.000} {0.009} {0.044} {0.059}

ξ = 0.00 0.073 0.105 0.042 0.019 – – – – –
(0.903) (0.850) (0.896) (0.507)
[0.510] [0.451] [0.488] [0.267]
{0.708} {0.686} {0.703} {0.691}

ψ = 0.25 0.254 0.256 0.255 0.254 – – – – –
(0.050) (0.050) (0.050) (0.048)
[0.032] [0.032] [0.032] [0.033]
{0.778} {0.775} {0.761} {0.768}

Target
Parameter

Experiment A4: as in experiment 1, but with i.n.i.d. structural errors (ψ = 0)

GMM1 GMM2 GMM3 GMM4 OLS 2SLSa 2SLSb 2SLSc 3SLS

α = 0.25 0.250 0.250 0.250 0.299 0.245 0.231 0.251 0.254 0.249
(0.021) (0.022) (0.022) (0.021) (0.007) (0.016) (0.033) (0.326) (0.480)
[0.026] [0.024] [0.023] [0.014] [0.008] [0.015] [0.066] [1.268] [0.592]
{0.905} {0.886} {0.863} {0.170} {0.000} {0.000} {0.051} {0.735} {0.200}

β = 0.40 0.400 0.400 0.400 0.358 0.404 0.416 0.399 0.399 0.394
(0.018) (0.018) (0.019) (0.017) (0.006) (0.013) (0.021) (0.269) (0.443)
[0.023] [0.021] [0.020] [0.011] [0.006] [0.012] [0.037] [0.996] [0.465]
{0.918} {0.894} {0.877} {0.154} {0.000} {0.000} {0.024} {0.476} {0.124}

γ = 0.50 0.500 0.500 0.500 0.547 0.571 0.566 0.577 0.536 0.359
(0.017) (0.017) (0.018) (0.012) (0.006) (0.009) (0.414) (1.034) (5.357)
[0.013] [0.013] [0.013] [0.007] [0.006] [0.008] [0.977] [4.445] [6.684]
{0.836} {0.832} {0.814} {0.005} {0.000} {0.000} {0.268} {0.544} {0.493}

χ = 1.00 1.000 0.999 0.999 1.007 0.999 0.996 0.999 0.999 1.011
(0.009) (0.009) (0.009) (0.008) (0.007) (0.007) (0.019) (0.057) (0.245)
[0.007] [0.006] [0.006] [0.004] [0.007] [0.007] [0.042] [0.201] [0.279]
{0.836} {0.817} {0.814} {0.562} {0.000} {0.000} {0.006} {0.035} {0.046}

ξ = 10.0 9.705 9.679 9.653 6.026 – – – – –
(0.868) (0.833) (0.935) (0.795)
[0.584] [0.582] [0.601] [0.453]
{0.760} {0.768} {0.753} {0.000}

ψ = 0.00 0.000 –0.002 –0.004 0.028 – – – – –
(0.068) (0.069) (0.070) (0.104)
[0.107] [0.102] [0.098] [0.050]
{0.941} {0.936} {0.928} {0.559}

See the notes accompanying Table 1 for a description of this table’s structure.
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Table A.3: Monte Carlo Simulations: perturbed parameters (part three)

Target
Parameter

Experiment A5: as in experiment 1, but with more network connections (B = 4)

GMM1 GMM2 GMM3 GMM4 OLS 2SLSa 2SLSb 2SLSc 3SLS

α = 0.25 0.248 0.249 0.249 0.294 0.227 0.176 0.249 0.299 0.250
(0.028) (0.027) (0.028) (0.030) (0.011) (0.028) (0.033) (1.399) (0.140)
[0.032] [0.033] [0.034] [0.023] [0.012] [0.023] [0.058] [6.954] [0.772]
{0.897} {0.909} {0.895} {0.518} {0.000} {0.000} {0.066} {0.982} {0.370}

β = 0.40 0.401 0.401 0.401 0.364 0.419 0.462 0.400 0.358 0.400
(0.022) (0.022) (0.023) (0.024) (0.009) (0.023) (0.024) (1.182) (0.095)
[0.026] [0.027] [0.028] [0.018] [0.010] [0.019] [0.043] [5.883] [0.545]
{0.894} {0.905} {0.897} {0.502} {0.000} {0.000} {0.023} {0.868} {0.226}

γ = 0.50 0.500 0.500 0.501 0.539 0.576 0.559 0.579 0.519 0.554
(0.016) (0.016) (0.016) (0.016) (0.008) (0.012) (0.271) (0.981) (1.237)
[0.010] [0.010] [0.011] [0.007] [0.008] [0.011] [0.547] [6.104] [7.776]
{0.768} {0.764} {0.779} {0.064} {0.000} {0.000} {0.325} {0.906} {0.664}

χ = 1.00 1.000 1.000 1.000 1.001 0.998 0.993 1.000 1.004 0.999
(0.008) (0.008) (0.008) (0.008) (0.007) (0.008) (0.011) (0.107) (0.043)
[0.004] [0.004] [0.005] [0.004] [0.007] [0.007] [0.020] [0.594] [0.251]
{0.733} {0.743} {0.740} {0.676} {0.000} {0.000} {0.003} {0.105} {0.071}

ξ = 10.0 9.888 9.870 9.884 5.764 – – – – –
(0.993) (0.953) (0.999) (0.702)
[0.590] [0.597] [0.632] [0.383]
{0.731} {0.738} {0.750} {0.000}

ψ = 0.25 0.238 0.238 0.233 0.303 – – – – –
(0.088) (0.092) (0.097) (0.122)
[0.108] [0.113] [0.116] [0.064]
{0.933} {0.932} {0.926} {0.639}

Target
Parameter

Experiment A6: as in experiment 1, but with a higher rewiring chance (b = 0.9)

GMM1 GMM2 GMM3 GMM4 OLS 2SLSa 2SLSb 2SLSc 3SLS

α = 0.25 0.252 0.252 0.253 0.291 0.238 0.245 0.249 0.275 –0.244
(0.022) (0.021) (0.023) (0.037) (0.009) (0.014) (0.023) (2.166) (15.70)
[0.033] [0.026] [0.026] [0.022] [0.008] [0.013] [0.046] [27.70] [10.87]
{0.939} {0.923} {0.915} {0.404} {0.000} {0.000} {0.029} {0.589} {0.174}

β = 0.40 0.398 0.399 0.398 0.367 0.410 0.405 0.401 0.379 0.678
(0.017) (0.017) (0.019) (0.030) (0.007) (0.012) (0.015) (1.898) (8.878)
[0.027] [0.021] [0.021] [0.018] [0.006] [0.011] [0.033] [24.29] [6.173]
{0.942} {0.930} {0.914} {0.396} {0.000} {0.000} {0.014} {0.194} {0.112}

γ = 0.50 0.496 0.498 0.495 0.555 0.571 0.573 0.563 0.336 3.942
(0.024) (0.022) (0.031) (0.013) (0.005) (0.005) (0.284) (4.571) (107.1)
[0.046] [0.032] [0.031] [0.008] [0.006] [0.006] [0.637] [58.45] [75.73]
{0.970} {0.960} {0.926} {0.005} {0.000} {0.000} {0.198} {0.257} {0.491}

χ = 1.00 1.000 1.000 1.000 1.001 0.998 0.999 1.000 1.007 1.066
(0.008) (0.008) (0.008) (0.007) (0.006) (0.007) (0.015) (0.509) (2.109)
[0.006] [0.005] [0.005] [0.004] [0.007] [0.007] [0.034] [6.515] [1.630]
{0.796} {0.777} {0.769} {0.713} {0.000} {0.000} {0.007} {0.012} {0.044}

ξ = 10.0 9.570 9.532 9.364 2.843 – – – – –
(1.402) (1.407) (1.720) (1.936)
[2.305] [1.675] [1.650] [0.873]
{0.968} {0.967} {0.945} {0.009}

ψ = 0.25 0.252 0.250 0.252 0.301 – – – – –
(0.069) (0.066) (0.072) (0.072)
[0.094] [0.072] [0.070] [0.045]
{0.878} {0.883} {0.830} {0.612}

See the notes accompanying Table 1 for a description of this table’s structure.
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Table A.4: Monte Carlo Simulations: alternative spatial matrices

Target
Parameter

Experiment A7: H = C = I+G; C∗
e = I+G+G2

GMM1 GMM2 GMM3 GMM4 OLS 2SLSa 2SLSb 2SLSc 3SLS

α = 0.25 0.249 0.249 0.248 0.119 0.246 0.232 0.250 0.340 0.256
(0.027) (0.028) (0.029) (0.074) (0.006) (0.026) (0.023) (2.791) (0.148)
[0.018] [0.018] [0.018] [0.037] [0.008] [0.017] [0.047] [84.82] [0.589]
{0.812} {0.796} {0.794} {0.232} {0.000} {0.000} {0.045} {0.952} {0.258}

β = 0.40 0.400 0.400 0.401 0.504 0.404 0.416 0.400 0.307 0.395
(0.022) (0.022) (0.024) (0.059) (0.006) (0.023) (0.016) (2.588) (0.135)
[0.015] [0.015] [0.015] [0.029] [0.006] [0.014] [0.031] [74.19] [0.441]
{0.817} {0.796} {0.788} {0.234} {0.000} {0.000} {0.014} {0.850} {0.168}

γ = 0.50 0.504 0.506 0.506 0.444 0.585 0.577 0.570 0.197 0.542
(0.025) (0.026) (0.028) (0.103) (0.006) (0.016) (0.197) (8.082) (1.821)
[0.022] [0.020] [0.022] [0.039] [0.006] [0.010] [0.463] [716.1] [6.484]
{0.890} {0.855} {0.842} {0.435} {0.000} {0.000} {0.218} {0.870} {0.519}

χ = 1.00 1.000 1.000 1.001 1.001 0.999 0.997 1.000 1.021 1.000
(0.008) (0.008) (0.008) (0.014) (0.006) (0.009) (0.011) (0.876) (0.030)
[0.004] [0.004] [0.004] [0.011] [0.006] [0.007] [0.023] [25.76] [0.181]
{0.717} {0.709} {0.713} {0.705} {0.000} {0.000} {0.004} {0.263} {0.066}

ξ = 10.0 9.961 9.962 9.975 1.020 – – – – –
(0.953) (0.962) (1.010) (1.854)
[0.700] [0.621] [0.678] [0.501]
{0.808} {0.775} {0.792} {0.002}

ψ = 0.25 0.224 0.216 0.212 0.278 – – – – –
(0.108) (0.112) (0.117) (0.301)
[0.092] [0.084] [0.091] [0.119]
{0.884} {0.841} {0.836} {0.523}

Target
Parameter

Experiment A8: H: groups of size 10; C = I+G; C∗
e = I+G+G2

GMM1 GMM2 GMM3 GMM4 OLS 2SLSa 2SLSb 2SLSc 3SLS

α = 0.25 0.248 0.250 0.249 0.151 0.251 0.247 0.250 0.272 0.230
(0.029) (0.031) (0.033) (0.112) (0.005) (0.033) (0.024) (0.971) (0.698)
[0.020] [0.021] [0.021] [0.024] [0.007] [0.017] [0.052] [50.24] [1.591]
{0.832} {0.812} {0.784} {0.369} {0.000} {0.000} {0.042} {0.952} {0.237}

β = 0.40 0.402 0.400 0.401 0.478 0.399 0.402 0.400 0.381 0.414
(0.024) (0.026) (0.027) (0.090) (0.006) (0.029) (0.016) (0.767) (0.459)
[0.017] [0.017] [0.017] [0.019] [0.006] [0.015] [0.030] [35.26] [1.048]
{0.830} {0.815} {0.791} {0.367} {0.000} {0.000} {0.016} {0.865} {0.153}

γ = 0.50 0.502 0.504 0.504 0.504 0.603 0.601 0.589 0.418 0.437
(0.024) (0.024) (0.025) (0.126) (0.006) (0.021) (0.221) (2.590) (4.711)
[0.014] [0.014] [0.015] [0.031] [0.006] [0.011] [0.518] [242.0] [13.16]
{0.780} {0.740} {0.739} {0.241} {0.000} {0.000} {0.207} {0.963} {0.532}

χ = 1.00 1.000 1.000 1.000 1.003 1.000 1.000 1.000 1.003 1.004
(0.008) (0.008) (0.008) (0.018) (0.006) (0.010) (0.010) (0.130) (0.141)
[0.004] [0.004] [0.004] [0.011] [0.006] [0.006] [0.021] [5.501] [0.440]
{0.707} {0.713} {0.707} {0.708} {0.000} {0.000} {0.005} {0.198} {0.074}

ξ = 10.0 10.010 9.986 10.013 –0.106 – – – – –
(0.937) (0.959) (0.937) (1.778)
[0.498] [0.449] [0.495] [0.281]
{0.732} {0.662} {0.722} {0.000}

ψ = 0.25 0.231 0.230 0.225 0.035 – – – – –
(0.084) (0.081) (0.086) (0.388)
[0.044] [0.039] [0.043] [0.103]
{0.700} {0.685} {0.688} {0.331}

See the notes accompanying Table 1 for a description of this table’s structure.
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Addendum E Data transformations: results
Table A.5 below reports results from estimates of a variation of model (5), adapted
to the specification (20) from our empirical application (with δ = 0), where matrix B
is constructed in such a way that, for some given choice of the characteristic matrix
C, it is BC = 0. In particular, we set B = I−CC+, where C+ is the Moore-Penrose
pseudoinverse of C. The results are characterized by large standard errors and point
estimates that are at times implausible, especially for the social effects parameter β.

Table A.5: Empirical estimates: data transformations

Outcome variable: y
(1)
i (later career GPA) Outcome variable: y

(2)
i (economics major)

(1) (2) (3) (4) (5) (6) (7) (8)

β 0.348*** –2.240 2.426*** 0.219 0.649 –1.388 10.94*** –0.078
(0.134) (4.939) (0.229) (0.174) (0.402) (3.003) (1.656) (0.439)

γ 11.38*** –6.629 10.49*** 10.43*** 0.461*** –0.123 2.948*** 0.681***
(0.521) (13.90) (0.927) (0.606) (0.101) (2.995) (0.738) (0.120)

χfe 0.190* 1.814* 2.187*** 0.477*** 0.010 –0.235 0.659*** –0.055***
(0.100) (1.024) (0.195) (0.123) (0.020) (0.177) (0.207) (0.020)

C C̃d C̃h1 C̃h2 I+G C̃d C̃h1 C̃h2 I+G

RFE NO NO YES NO NO NO YES NO
Obs. 1,141 1,141 1,141 1,141 1,141 1,141 1,141 1,141

Notes. Each column in this table reports IV/2SLS estimates of a transformed version of model (20),
for both outcome variables as indicated in the header. Both sides of the model equation (in vectoral
form), are pre-multiplied by a matrix B such that, for a given choice of matrix C as specified in each
column, BC = 0, resulting in a variation of model (5). Specifically, B = I−CC+, where C+ is the
Moore-Penrose pseudoinverse of C. All estimates incorporate the restriction δ = 0 (no exogenous
effects). All estimates are based upon orthogonality conditions between the transformed error term
and: (i) a constant vector; (ii) the wki controls; (iii) two “instruments” (IVs) Bx and GBx, where x
stacks all high-school final grades. Point estimates for parameters other than β, γ, χfe are omitted.
Heteroschedasticity-consistent standard errors are in parentheses. Asterisk series: *, **, and ***;
denote statistical significance at the 10, 5 and 1 per cent level, respectively. Obs.: Observations.
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